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ABSTRACT

A crucial performance bottleneck in most interprocedural static
analyses is solving pointer analysis constraints. We present Pus,
a highly efficient solver for inclusion-based pointer analysis. At
the heart of Pus is a new constraint solving algorithm that signifi-
cantly advances the state-of-the-art. Unlike the existing algorithms
(i.e., wave and deep propagation) which construct a holistic con-
straint graph, at each stage Pus only considers partial constraints
that causally affect the final fixed-point computation. In each itera-
tion Pus extracts a small causality subgraph and it guarantees that
only processing the causality subgraph is sufficient to reach the
same global fixed point. Our extensive evaluation of Pus on a wide
range of real-world large complex programs yields highly promis-
ing results. Pus is able to analyze millions of lines of code such as
PostgreSQL in 10 minutes on a commodity laptop. On average, Pus
is more than 7× faster in solving context-sensitive constraints, and
more than 2× faster in solving context-insensitive constraints com-
pared to the state of the art wave and deep propagation algorithms.
Moreover, Pus has been used to find tens of previous unknown bugs
in high-profile codebases including Linux, Redis, and Memcached.
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1 INTRODUCTION

Pointer alias analysis is a fundamental technique in an enormous
amount of program analysis applications, such as value-flow analy-
ses [4, 26, 32], deep bug detectors [13, 16, 18, 20], memory leak de-
tectors [6, 8, 33, 35], etc. It is also the prerequisite of many compiler
optimizations such as loop optimization and dead code elimination.

Although pointer analysis has been a focus of research for decades,
it remains an open challenge to scale pointer analysis to large com-
plex codebases. A crucial performance bottleneck is in solving
the pointer analysis constraints. While precise pointer analysis
is known to be undecidable [12, 24], any practical solution must
over-approximate the exact answer. A state-of-the-art approach is
the Andersen-style [1], inclusion-based pointer analysis, in which
pointer assignments are constrained by inclusive relations. For ex-
ample, a simple assignment 𝑞 = 𝑝 from pointer 𝑝 to 𝑞 produces
the contraint 𝑝𝑡𝑠 (𝑝) ⊆ 𝑝𝑡𝑠 (𝑞), meaning that the points-to set of
𝑝 , denoted as 𝑝𝑡𝑠 (𝑝), is a subset of points-to set of 𝑞. For a com-
plex assignment involving pointer dereference, 𝑞 = ∗𝑝 , it produces
∀𝑣 ∈ 𝑝𝑡𝑠 (𝑝) : 𝑝𝑡𝑠 (𝑣) ⊆ 𝑝𝑡𝑠 (𝑞). These inclusive constraints, while
ensuring valid may-alias results, provide significantly higher preci-
sion than unification-based approaches (e.g.,Steensgaard-style [31]).

As real-world programs often produce a huge number of con-
straints, quadratic to the number of pointers, the key challenge re-
mained is how to efficiently solve these constraints. There was a sig-
nificant effort over a decade ago by Pereira, Hardekopf, Pearce [10,
22, 23]. In their work, a naïve fixed-point algorithm is improved by
separating complex constraints and propagating the points-to in-
formation into two stages; by applying different strongly connected
component (SCC) detection strategies, e.g., lazy cycle detection
and hybrid cycle detection, to reduce the size of the constraint
graph [10]; or by sorting the constraint graph topologically to
avoid redundant computation [10, 22]. More recently, Lei et al. [15]
propose an efficient algorithm (Dea) for handling positive weight
cycles in field-sensitive pointer analysis. Liu et al. [18] propose an
incremental pointer analysis (D4) that only analyzes the updated
code changes to dodge the performance overhead introduced by a
whole-program pointer analysis. While these approaches further
improve the state-of-the-art in some specific aspects, their funda-
mental solving algorithm remains the same (e.g., Dea still relies on
Wp [23] to solve the constraints).

https://doi.org/10.1145/3510003.3510075
https://doi.org/10.1145/3510003.3510075
https://doi.org/10.1145/3510003.3510075
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Figure 1: An example to illustrate the causality subgraph:

with new edge inserted after iteration 𝑛 − 1, node C is iden-

tified as a causal node in iteration 𝑛.

In this paper, we tackle this tremendous challenge with a new
fundamental solving algorithm. Unlike previous algorithms, our
new algorithm, Partial Update Solver (Pus), only processes a partial
constraint graph in each iteration, yet still guarantees the same
global fixed point. The key insight behind our approach is that dur-
ing the constraint solving process in each iteration, only a very small
causality subgraph is subject to change due to the updates made in
previous iterations. With the causality subgraph, Pus prunes the
constraint graph to only operate on a small subset of the constraints
in each iteration, which eliminates redundant computation across
iterations, resulting in a much faster algorithm.

Compared to prior approaches [10, 20, 23] that apply general
graph processing techniques to pointer analysis, Pus is more effi-
cient because it leverages two unique properties of pointer analysis:
• First, the sparsity of the constraint graph, which leads to our
definition of causality subgraph;
• Second, the interconnections between different solving iter-
ations provide the necessary information to minimize the
set of causal constraints in the next iteration.

As illustrated in Fig. 1, suppose a new edge 𝐴→ 𝐶 is inserted in
the previous iteration (due to complex constraints), 𝐶 is identified
as a causal node because the points-to information carried by 𝐴
will take effect on 𝐶 in the current iteration in order to satisfy the
inclusive constraints. However, 𝐵 is not a causal node because its
points-to information is not affected by the new edge. Our empiri-
cal results show that, on average, the causality subgraph includes
less than 4% of the nodes and edges in the full constraint graph,
indicating a dramatic performance optimization opportunity (the
formal definition of causality subgraph is given by Definition 4.3).

Fig. 2 shows an overview of Pus. At a high level, Pus adopts
a similar workflow to the existing two-phase constraint solving
algorithms [23], in which the constraints are processed iteratively
between two stages (for processing simple constraints and complex
constraints, respectively). However, unlike the existing algorithms,
which repeat the computation over the whole graph in each iter-
ation, Pus interactively invokes the two processing phases such
that the first phase computes a causality subgraph and selectively
propagates the points-to information within the causality subgraph
(based on the information provided by the second phase). Mean-
while, as new points-to information is propagated, the first phase
also collects a subset of all the complex constraints to be processed
in the second phase. In each iteration of Pus, one phase provides
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Figure 2: An overview of Pus: partial update solver.

necessary information for the other to infer a small set of causal
constraints to be processed.

In principle, the time complexity of Andersen-stype pointer
analysis is bounded by 𝑂 (𝑁 2𝑚𝑎𝑥𝑥𝐷 (𝑥) + 𝑁𝐸) on a k-sparse pro-
gram [30], where𝑚𝑎𝑥𝑥𝐷 (𝑥) is the maximal number of statements
dereferencing a pointer 𝑥 , 𝑁 /𝐸 is the number of nodes/edges in the
constraint graph. The value of𝑚𝑎𝑥𝑥𝐷 (𝑥) is bounded by a constant
𝑘 (i.e.,𝑚𝑎𝑥𝑥𝐷 (𝑥) ≤ 𝑘) for real-world applications. The first portion,
𝑂 (𝑁 2𝑚𝑎𝑥𝑥𝐷 (𝑥)), summarizes the complexity for handling com-
plex constraints and the second portion, 𝑂 (𝑁𝐸), summarizes the
complexity for propagating points-to information on the constraint
graph. As Pus propagates points-to information only on the causal-
ity subgraph, it reduces the second portion to 𝑂 (𝑁 2𝑚𝑎𝑥𝑥𝐷 (𝑥) +
𝑁 ∗𝐸∗), where 𝑁 ∗/𝐸∗ is the number of nodes/edges in the causality
subgraph. In practice, this reduction leads to significant perfor-
mance improvements because typically 𝑁 ∗ ≪ 𝑁 and 𝐸∗ ≪ 𝐸 in
real-world programs.

In summary, this paper makes the following contributions:
• We propose Pus, a novel constraint solving algorithm for
inclusion-based pointer analysis. Pus identifies a minimal
causality subgraph to maximize performance while ensuring
that the same global fixed point is reached.
• We have proved the correctness of Pus. Formal proofs are
provided in the supplementary materials.
• We conduct extensive experiments and show that Pus is
more than 7× faster than the state-of-the-art Wp (Wave
Propagation) and Dp (Deep Propagation) algorithms [23] in
solving context-sensitive pointer analysis, and more than 2×
faster in solving context-insensitive pointer analysis.
• Pus has enabled a commercial static analyzer and used in [19]
to find tens of previous unknown bugs in large complex
systems including Linux, Redis and Memcached (see https:
//coderrect.com/openscan/).

2 BACKGROUND

In this section, we introduce the background of inclusion-based
pointer analysis.

Inclusion-based Pointer Analysis. The inter-procedural inclusion-
based pointer analysis abstracts different program statements into
the constraints listed in Table 1. It first scans the target program

https://coderrect.com/openscan/
https://coderrect.com/openscan/
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Table 1: Constraints for inclusion-based pointer analysis

Category Type Statement Constraints
Base Address Taken 𝑣1 ← &𝑜 𝑙𝑜𝑐 (𝑜)1∈ 𝑝𝑡𝑠 (𝑣1)
Simple Assignment 𝑣1 ← 𝑣2 𝑝𝑡𝑠 (𝑣1) = 𝑝𝑡𝑠 (𝑣2)
Simple Phi Assignment 𝑣 ← 𝜙 (𝑣1, 𝑣2, ...) 𝑝𝑡𝑠 (𝑣) = (𝑝𝑡𝑠 (𝑣1) ∪ 𝑝𝑡𝑠 (𝑣2) ∪ ...)
Simple Call Assignment 𝑟 ← 𝑓 (𝑣1, 𝑣2, ...) ∀ return 𝑣 𝑖𝑛 𝑓 (𝑥1, 𝑥2, ...) : 𝑝𝑡𝑠 (𝑟 ) = 𝑝𝑡𝑠 (𝑣) ∧

𝑝𝑡𝑠 (𝑥1) = 𝑝𝑡𝑠 (𝑣1) ∧ 𝑝𝑡𝑠 (𝑥2) = 𝑝𝑡𝑠 (𝑣2) ∧ ...
Complex Load 𝑣1 ← ∗𝑣2 ∀𝑣 ∈ 𝑝𝑡𝑠 (𝑣2) : 𝑝𝑡𝑠 (𝑣1) = 𝑝𝑡𝑠 (𝑣)
Complex Store ∗𝑣1 ← 𝑣2 ∀𝑣 ∈ 𝑝𝑡𝑠 (𝑣1) : 𝑝𝑡𝑠 (𝑣) = 𝑝𝑡𝑠 (𝑣2)
Complex Offset 𝑣 ← &𝑠 .𝑓 𝑖𝑒𝑙𝑑 ∀𝑣 ∈ 𝑝𝑡𝑠 (𝑠) : 𝑙𝑜𝑐 (𝑣 .𝑓 𝑖𝑒𝑙𝑑) ∈ 𝑝𝑡𝑠 (𝑣)
1 𝑙𝑜𝑐 (𝑜) denotes the memory location of object 𝑜 .
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Figure 3: The comparison between Pus, Wp and Dp. (a) the solving process of Wp (the entire graph need to be revisited) (b)

the solving process of Pus (only marked node need to be visited) (c) the solving process of Dp (𝑉1...𝑉𝑛 are visited twice) (d) the

solving process of Pus (𝑉1...𝑉𝑛 are only visited once).

and generates three types of constraints: base, simple and com-

plex [10]. It then abstracts the target program into a constraint
graph (Definition. 2.1). Inclusion-based pointer analysis can then
be solved by computing the transitive closure of the constraint
graph such that for every pair of nodes 𝑣1, 𝑣2 ∈ V , if there is an
edge 𝑒 = {𝑣1 → 𝑣2} ∈ E, then 𝑝𝑡𝑠 (𝑣1) and 𝑝𝑡𝑠 (𝑣2) are the minimal
points-to sets that ensure 𝑝𝑡𝑠 (𝑣1) ⊆ 𝑝𝑡𝑠 (𝑣2).

The global fixed point is reached when all complex constraints
and simple constraints are satisfied (complex constraints are sat-
isfied by inserting new edges into the constraint graph): For each
load constraint (𝑣1 ← ∗𝑣2) and every 𝑣 ∈ 𝑝𝑡𝑠 (𝑣2), we added a new
edge 𝑣 → 𝑣1 into the constraint graph; for each store constraint
(∗𝑣1 ← 𝑣2) and every 𝑣 ∈ 𝑝𝑡𝑠 (𝑣1), we added a new edge 𝑣2 → 𝑣 into
the constraint graph; and for each offset constraint (𝑣 ← &𝑠 .𝑓 𝑖𝑒𝑙𝑑)
and every 𝑣 ∈ 𝑝𝑡𝑠 (𝑠), we insert 𝑙𝑜𝑐 (𝑣 .𝑓 𝑖𝑒𝑙𝑑) into 𝑝𝑡𝑠 (𝑣).

Definition. 2.1: The constraint graph (CG) of a program is an

attributed graph G = {V, E, 𝑝𝑡𝑠}, in whichV is a set of vertices, each

of which corresponds to a variable 𝑣 in the program; E ⊆ (V×V) is a
set of directed edges (constraints) between vertices inV , each of which

represents a simple constraint between two nodes (in the following

text, the word ‘edge’ and ‘constraint’ are used interchangeably); and

𝑝𝑡𝑠 : V → 𝑃 (O) (where 𝑃 (O) is the power set of the set of objects
created by memory allocation operations in the program) is a function

from 𝑣 ∈ V to 𝑠 ∈ 𝑃 (O) that maps a node (pointer) to its points-to

set.

3 LIMITATION OF THE EXISTING METHODS

We divide the existing constraint solving algorithms for inclusion-
based pointer analysis roughly into two categories and summarize
their limitations as follows respectively.

Methods that process constraints in topological order: Performing
a topological sorting on the constraint graph ensures that con-
straints are processed in the optimal order by guaranteeing that
the points-to sets of all the predecessors of a node 𝑛 have been
updated before processing 𝑛. In this way, the points-to sets of the
predecessors are the most recently updated before propagating to
the node 𝑛. Many algorithms [7, 11, 21, 22] adopt the topological
sorting approach to boost the constraint solving time. Despite of
the benefits, performing SCC detection and topological sorting on
large constraint graphs itself is time-consuming and could easily
become a bottleneck that slows down the solving process.

Fig. 3 (a) and Fig. 3 (b) shows the solving process of Wp and
Pus on the example constraint graph respectively, as a new edge
(2→ 5) is inserted,Wp revisits the entire graph again in topological
order, on the other hand, Pus computes the same result by only
visiting the three nodes in the causal subgraph (marked in grey).

Methods that process constraints in undetermined order: Methods
that do not enforce SCC detection and topological order on the
constraint graph (e.g., Deep Propagation (DP) [23], Lazy Cycle
Detection (LCD) and Hybrid Cycle Detection (HCD) [10]) at each
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iteration unavoidably waste resources on redundant computation
due to a suboptimal order of constraint processing.

Fig. 3 (c) and Fig. 3 (d) show the solving process of Dp and Pus
on the example constraint graph respectively. When both 𝑝𝑡𝑠 (𝑥)
and 𝑝𝑡𝑠 (𝑦) are updated, Dp adopts a depth-first search to propagate
from 𝑥 → · · · → 𝑣𝑛 and from 𝑦 → · · · → 𝑣𝑛 separately. As a
result, the nodes and constraints between 𝑣1 → · · · → 𝑣𝑛 are
visited twice. However, Pus shows that when analyzing the graph
in topological order (i.e., 𝑥 → 𝑣1, 𝑦 → 𝑣1 and then 𝑣1 → · · · → 𝑣𝑛),
every constraint only needs to be visited once.

The comparison between the existing two categories of algo-
rithms reveals the dilemma of current algorithms: On one hand,
full SCC detection and topological sorting are desired to eliminate
redundant computation and to reduce the number of nodes by col-
lapsing nodes in the same SCC in the constraint graph; on the other
hand, applying a complete SCC detection on a large graph itself
can introduce an unbearable overhead.

We found that the common problem for those works is that
they all take a holistic view towards constraint graphs. Instead,
Pus works on causality subgraphs. By only working on a small
subgraph in each iteration, Pus can enjoy the benefit brought by
topological sorting without introducing too much performance
overhead. The rationale behind causality subgraphs and the unique
interconnection between different phases of the solving process are
summarized as follows:
• Constraint graphs for real programs are, by nature, sparsely
connected. The sparsity of constraint graphs is a result of
modularization of modern software (thus fewer connections
between different modules) as well as the locality 1 of pro-
gram statements (thus fewer connections between different
statements). As constraint graphs are abstracted from pro-
grams, an update on one specific node in the constraint graph
will likely only affect a limited number of neighboring nodes.
Thus, in each iteration during the solving process and with
limited nodes whose points-to sets are updated, only a very
small subset (usually ≤ 4% according to our experiments) of
the nodes (casual nodes) are required to be processed, which
means that topological sorting and points-to set propagation
only need to be done on a small causality subgraph of the
entire constraint graph in each iteration.

Being able to precisely infer a small subgraph in each iteration,
Pus discovers another memory optimization opportunity: One of
the most widely adopted optimization techniques used in existing
methods and frameworks (e.g., WALA [34]) is to maintain a cached
points-to set for every node in the constraint graph (Wave Prop-
agation [23] even requires an additional cached points-to set for
every edge in the graph). The cached points-to set is used to filter
out non-causal nodes whose points-to sets do not get updated in the
current iteration and to only process diffed points-to information.
However, if the causality subgraph can be accurately inferred and
most of the constraints in the subgraph are effective, i.e., by pro-
cessing which, the points-to set will get updated, then the cached

1The locality here has different meaning from the spatial/temporal locality in
computer architecture. Here, it is used to explain that most of the statements in the
program are irrelevant (e.g., a++; and b++;).

points-to set can be optionally eliminated to improve the memory
efficiency without causing significant performance overhead.

4 ALGORITHM

In this section, we describe the detailed algorithm for Pus. We first
present the overall structure of Pus in Algorithm 1, we then explain
each component separately in detail in Algorithm 2, Algorithm 3
and Algorithm 4. For simplicity, we describe Pus under the context
of field-insensitive pointer analysis. Pus can be extended for field-
sensitive pointer analysis (as we implemented for experiments) by
adding another type of constraint, i.e., the offset constraint, into
complex constraints similar to the previous work [22].

4.1 Structure of the Algorithm

At a high level, Pus has a similar structure toWp [23] that separates
the insertion of new constraints (handling complex constraints)
from the propagation of points-to sets (handling simple constraints).
However, Pus distinguishes itself by connecting the two constraint
solving phases using two separate work lists:
• 𝐿𝑐𝑜𝑝𝑦 :{E} – A subset of simple constraints that is used to
compute the causality subgraph used in following stages.

Algorithm 1: Partial Update Solver
Input :A unsolved constraint graph G = {V, E, 𝑝𝑡𝑠}
Result :The points-to information for every pointer in the

program
1 𝐿𝑐𝑜𝑚𝑝 ← ∅;
2 𝐿𝑐𝑜𝑝𝑦 ← ∅;
3 for each 𝑣 ∈ V do

4 if 𝑝𝑡𝑠 (𝑣) ≠ ∅ then

// Nodes with address taken constraints

have non-empty points-to set

5 𝐶𝑐𝑜𝑝𝑦 ← 𝑣 .getCopyConstraints();
// get simple constraints started from the

node and insert them into 𝐿𝑐𝑜𝑝𝑦

6 𝐿𝑐𝑜𝑝𝑦 .insert(𝐶𝑐𝑜𝑝𝑦 );
// insert the node into 𝐿𝑐𝑜𝑚𝑝

7 𝐿𝑐𝑜𝑚𝑝 .insert(𝑣);
8 end

9 end

10 while 𝐿𝑐𝑜𝑝𝑦 ≠ ∅ do

// SCC collapse on subgraphs of G based on

𝐿𝑐𝑜𝑝𝑦

11 SCC Collapse and TopoSort on subgraphs of G
(Algorithm 2);

12 𝐿𝑐𝑜𝑚𝑝 ← Partially Process Simple Constraints
(Algorithm 3);

13 𝐿𝑐𝑜𝑝𝑦 .𝑐𝑙𝑒𝑎𝑟 ();
14 𝐿𝑐𝑜𝑝𝑦 ← Partially Process Complex Constraints

(Algorithm 4);
15 𝐿𝑐𝑜𝑚𝑝 .𝑐𝑙𝑒𝑎𝑟 ();
16 end
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• 𝐿𝑐𝑜𝑚𝑝 :{V} – A subset of nodes on which the complex con-
straints need to be recomputed.

At a high level, Algorithm 1 can be divided into initialization
phase (from line 3 to 9), SCC detection and topological sort phase
(line 11), Simple constraint processing phase (line 1) and Complex
constraint processing phase (line 14), which are explained in detail
in the following sections. We also relies on the following conven-
tions to describe our algorithm: We refer to any edge 𝑒 ∈ 𝐿𝑐𝑜𝑝𝑦
used in Algorithm 1 as an essential edge and refer to any node
𝑣 ∈ 𝐿𝑐𝑜𝑚𝑝 used in Algorithm 1 as an unsaturated node. We use
𝑑𝑠𝑡 (E) to denote the set of destination nodes for all edges 𝑒 ∈ E;
we use 𝑠𝑟𝑐 (E) to denote the set of source nodes for all 𝑒 ∈ E; we
use 𝑖𝑛(𝑛) to denote the set of incoming edges to node 𝑛; we use
𝑜𝑢𝑡 (𝑛) to denote the set of outgoing edge from 𝑛; we use 𝑝𝑟𝑒𝑑 (𝑛),
where 𝑛 is a node, to denote the set of predecessor nodes of 𝑛; we
use 𝑠𝑢𝑐𝑐 (𝑛) to denote the set of the successor nodes of 𝑛.

4.2 Detailed Algorithm

In this section, we describe the detailed algorithms of all sub-
components that are used in Algorithm 1.

Algorithm 2: SCC Collapse and TopoSort on SubGraphs
of G
Input :A constraint graph G = {V, E, 𝑝𝑡𝑠}

A list of starting edges 𝐿𝑐𝑜𝑝𝑦 = {E}
Output :A toposorted vectorV of SCCs that are reachable

from at least one of 𝑒 ∈ 𝐿𝑐𝑜𝑝𝑦
1 V ′ ← ∅;
2 E ′ ← ∅;
3 𝑝𝑡𝑠 ′ ← 𝑝𝑡𝑠;
4 G′ ← {V ′, E ′, 𝑝𝑡𝑠 ′};
// prune the graph G to a subgraph G′

5 while 𝐿𝑐𝑜𝑝𝑦 ≠ ∅ do

6 𝑒 ← 𝐿𝑐𝑜𝑝𝑦 .pop();
7 if visited(𝑒) then

8 continue ; // skip covered edges

9 end

10 setVisited(𝑒);
11 E ′.insert(𝑒);

// add source and destination nodes of 𝑒 into

G′
12 V ′.insert({𝑒.𝑠𝑟𝑐, 𝑒 .𝑑𝑠𝑡});
13 E ′.insert({𝑒 ′ | 𝑒 ′ ∈

𝑣 .𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔_𝑒𝑑𝑔𝑒𝑠 () ∧ 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 (𝑒.𝑑𝑠𝑡, 𝑣) = 𝑡𝑟𝑢𝑒});
14 V ′.insert({𝑣 ′ | 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 (𝑒.𝑑𝑠𝑡, 𝑣) = 𝑡𝑟𝑢𝑒});
15 end

// perform SCC detection on the subgraph G′
// also sort the graph internally

16 V← Tarjan(G′);
// return the toposorted vector V

17 return V;

Subgraph SCC Detection: As shown in Algorithm 2, the SCC
detection is performed on the subgraph G′ instead of the original
graph G. The set of edges and nodes in G′ is computed according
to the reachability from the constraints in 𝐿𝑐𝑜𝑝𝑦 .

The node set N ′ of G′ consists of (1) the source and destination

nodes of every constraints in 𝐿𝑐𝑜𝑝𝑦 and (2) all the nodes that are
reachable for at least one of the destination nodes of the constraints
in 𝐿𝑐𝑜𝑝𝑦 . The edge set E ′ of G′ consists of (1) all the edges in 𝐿𝑐𝑜𝑝𝑦
and (2) all the outgoing edge of node 𝑛 that are reachable from a
least one of the destination nodes of the constraints in 𝐿𝑐𝑜𝑝𝑦 .

After SCC detection, a vector of nodes in topological order is
returned by Algorithm 2 and used as one of the inputs for Algo-
rithm 3. Note that although Algorithm 2 presents the computation
of G′ as a separate step, G′ can be computed along with SCC de-
tection utilizing the DFS traversal performed by Tarjan’s algorithm
internally.

Propagating points-to set on the causality subgraph: Algo-
rithm 3 describes the procedure for processing simple constraints.
Algorithm 3 takes a subgraph G′ of G and a topologically sorted

Algorithm 3: Partially Process Copy Constraints
Input :A constraint graph: G′ = {V ′, E ′, 𝑝𝑡𝑠 ′}

A sorted vector of SCCs: V = {N}
A list of effective copy constraints: 𝐿𝑐𝑜𝑝𝑦

Output :A set of node S whose complex constraints need
to be processed

1 𝐿𝑐𝑜𝑚𝑝 ← ∅;
2 while V.isNotEmpty() do

3 𝑛 ← V.pop();
4 for each 𝑒 = {𝑠𝑟𝑐, 𝑑𝑠𝑡} ∈ 𝑛.𝑔𝑒𝑡𝐶𝑜𝑝𝑦𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑡𝑠 () do
5 if 𝑒 = {𝑠𝑟𝑐, 𝑑𝑠𝑡} ∈ 𝐿𝑐𝑜𝑝𝑦 ∨ 𝑠𝑟𝑐 ∈ 𝐿𝑐𝑜𝑚𝑝 then

6 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 ← PropagatePointsTo(src, dst);
7 if changed then

8 𝐿𝑐𝑜𝑚𝑝 .insert(dst);
9 end

10 else

// Prune the graph, skip unchanged

subgraph

11 continue;
12 end

13 end

14 end

15 return 𝐿𝑐𝑜𝑚𝑝 ;
/* Process a simple constraint between src and

dst, return true if the points-to information
is updated */

16 Function PropagatePointsTo(𝑠𝑟𝑐, 𝑑𝑠𝑡):
17 𝑝𝑡𝑠 (𝑑𝑠𝑡) ← 𝑝𝑡𝑠 (𝑑𝑠𝑡) ∪ 𝑝𝑡𝑠 (𝑠𝑟𝑐);
18 if 𝑑𝑠𝑡 .changed then

19 return true;
20 end

21 return false;
22 End Function
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Figure 4: Further prune on the constraint graph during sim-

ple constraints processing phase.

vector of nodes as the inputs. The topologically sorted vector of
nodes ensures that simple constraints are processed in the optimal
order to avoid redundant computation. 𝐿𝑐𝑜𝑝𝑦 is also passed in and
used at line 5 to perform further pruning on the causality subgraph.

There are two important details that are worth noting in Algo-
rithm 3:

(1) During the points-to set propagation, the algorithm also
computes and eventually outputs a list of nodes, 𝐿𝑐𝑜𝑚𝑝 , to
be used in Algorithm 4, which contains all the nodes on
which the complex constraints need to be processed.

(2) At line 11, the algorithm performs another pruning on the
causality subgraph to further reduce the number of con-
straints processed by Pus.

The computation on 𝐿𝑐𝑜𝑚𝑝 is straightforward, Algorithm 3 sim-
ply inserts a node into 𝐿𝑐𝑜𝑚𝑝 if the points-to set of the node has
been updated during the current iteration.

The graph processed by Algorithm 3 defines the causality sub-
graphs in each iteration. In addition, we introduced the following
definition to formally define the causality subgraph.

Algorithm 4: Partially Process Complex Constraints
Input :The constraint graph: G = {V, E, 𝑝𝑡𝑠}

Nodes with effective complex constraints: 𝐿𝑐𝑜𝑚𝑝

Output :A set of processed: 𝐿𝑐𝑜𝑝𝑦
1 while 𝐿𝑐𝑜𝑚𝑝 .isNotEmpty() do

2 𝑉 ← 𝐿𝑐𝑜𝑚𝑝 .pop();
3 for each {𝑙 ← ∗𝑉 } ∈ V.getLoadConstraints() do

// process load constraints

4 𝑛𝑒𝑤𝐸𝑑𝑔𝑒𝑠 ← processLoad(𝑙,𝑉 );
5 𝐿𝑐𝑜𝑝𝑦 .insert(𝑛𝑒𝑤𝐸𝑑𝑔𝑒𝑠);
6 end

7 for each {∗𝑉 ← 𝑟 } ∈ V.getStoreConstraints() do
// process store constraints

8 𝑛𝑒𝑤𝐸𝑑𝑔𝑒𝑠 ← processStore(𝑉 , 𝑙);
9 𝐿𝑐𝑜𝑝𝑦 .insert(𝑛𝑒𝑤𝐸𝑑𝑔𝑒𝑠);

10 end

11 end

12 return 𝐿𝑐𝑜𝑝𝑦 ;

Definition. 4.1: Given a constraint graph G = {V, E, 𝑝𝑡𝑠} and
a set of essential edges E+ ⊆ E, the essential-edge-covered graph
G′ = {V ′, E ′, 𝑝𝑡𝑠 ′} is a subgraph of G, whereV ′ = V1 ∪ 𝑠𝑟𝑐 (E+)
andV1 = {𝑣 | ∃𝑠 ∈ 𝑑𝑠𝑡 (E+),v is reachable from s}; E ′ = E+∪{𝑒 | 𝑒 =
𝑜𝑢𝑡 (𝑛) ∧ 𝑛 ∈ V1} and 𝑝𝑡𝑠 ′ = 𝑝𝑡𝑠 .

Definition 4.2: Given an essential-edge-covered graph G′ =
{V ′, E ′, 𝑝𝑡𝑠 ′} and its corresponding essential edge set E+ ⊆ E ′, the
set of ineffective edges E− and the set of ineffective nodesV− are
determined dynamically during the points-to set propagation process.

For node 𝑛, if ∀𝑝 ∈ 𝑝𝑟𝑒𝑑 (𝑛), 𝑝𝑡𝑠 (𝑝) does not get updated in the

current iteration, then 𝑛 ∈ V−. Similarly, E− = {𝑒 | 𝑒 ∈ 𝑜𝑢𝑡 (𝑛) ∧𝑛 ∈
V− ∧ 𝑒 ∉ E+}.

Definition 4.3: Given an essential-edge-covered graph G′ =
{V ′, E ′, 𝑝𝑡𝑠 ′} and a set of ineffective edges E−, the causality sub-
graph G∗ = {V∗, E∗, 𝑝𝑡𝑠∗} ,which is processed by Pus, is a subgraph
of G′, whereV∗ = V ′ −V−, E∗ = E ′ − E−, and 𝑝𝑡𝑠∗ = 𝑝𝑡𝑠 ′.

Intuitively, definition 4.2 defines the set of nodes and edges
that are pruned in Algorithm 3 at line 11, and the causality sub-
graph is defined by excluding the pruned nodes and edges from the
essential-edge-covered graph. Fig. 4 offers an example that explains
the rationale behind the graph pruning. In Fig. 4, the grey nodes and
solid edges are within the essential-edge-covered graph G′ for the
current iteration. The corresponding points-to set is marked beside
each node. In this example, the incoming update ({𝑂1}) to be prop-
agated within the causality subgraph is already included in 𝑝𝑡𝑠 (𝐶)
due to 𝐵 → 𝐶 . To further propagate the points-to set from 𝐶 does
not make any update to 𝐶’s successors (𝐷 and 𝐸 in the example),
thus the causality subgraph can be pruned by skipping𝐶 → 𝐷 and
𝐶 → 𝐸. In Algorithm 3, since nodes are processed in topological
order and all the nodes whose points-to sets have been updated
in the current iteration are in 𝐿𝑐𝑜𝑚𝑝 , the test on 𝑠𝑟𝑐 ∈ 𝐿𝑐𝑜𝑚𝑝 at
line 5 returns true only when 𝑝𝑡𝑠 (𝑠𝑟𝑐) gets updated in the current
iteration. For node 𝑑𝑠𝑡 , if all the predecessors of 𝑑𝑠𝑡 are not included
in 𝐿𝑐𝑜𝑚𝑝 and thus have not been updated, the outgoing edges of
𝑑𝑠𝑡 will be pruned.

By the end of the computation, Algorithm 3 outputs 𝐿𝑐𝑜𝑚𝑝 after
draining the inputted node vector and passes 𝐿𝑐𝑜𝑚𝑝 to Algorithm 4.

Processing complex constraints: Algorithm 4 provides detailed
information on how Pus handles complex constraints. The algo-
rithm takes 𝐿𝑐𝑜𝑚𝑝 , the list of nodes provided by Algorithm 3, and
locates all the nodes on which the complex constraints need to be
processed.

The processing of the complex constraints follows a standard
procedure as described in Section 2 by inserting new edges into the
constraint graph. Algorithm 4 inserts all the newly added edges
into the 𝐿𝑐𝑜𝑝𝑦 and eventually passes 𝐿𝑐𝑜𝑝𝑦 to both Algorithm 2 and
Algorithm 3.

Note that whether or not a cached points-to set should be main-
tained so that Pus is able to process only the diffed points-to set [23]
for complex constraints can be optionally applied. We omit the
cached points-to set in our algorithm description as well as our
implementation for better memory efficiency and our experimental
results show that Pus is still much faster than techniques which
apply the cached points-to set optimization.
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4.3 Proof of Correctness

We prove that Pus will reach the global fixed point by the end of
the computation in this section.

Definition. 4.4: We say that a constraint graph G = {V, E, 𝑝𝑡𝑠} is
points-to saturated or reaches a points-to saturated state iff for

any pair of nodes 𝑣1, 𝑣2 ∈ V , if there is a path from 𝑣1 to 𝑣2, we have
the minimal sets for 𝑝𝑡𝑠 (𝑣1) and 𝑝𝑡𝑠 (𝑣2) and 𝑝𝑡𝑠 (𝑣1) ⊆ 𝑝𝑡𝑠 (𝑣2).

Definition. 4.5: We say that a constraint graph G = {V, E, 𝑝𝑡𝑠}
is constraint saturated or reaches a constraint saturated state
iff for any node 𝑣 ∈ V , if there is a load constraint (p = *v) on 𝑣
then there is an edge 𝑒 = {𝑣 ′ → 𝑝} ∈ E for every 𝑣 ′ ∈ 𝑝𝑡𝑠 (𝑣); and
if there are store constraints (*v = p) on v, then there is an edge

𝑒 = {𝑝 → 𝑣 ′} ∈ E for every 𝑣 ′ ∈ 𝑝𝑡𝑠 (𝑣).

By definition, the global fixed point is reached when the con-
straint graph is both points-to saturated and constraints saturated.

Lemma 4.1: Given an acyclic constraint graph, it will reach a
points-to saturated state after processing the nodes once in topolog-
ical order. □

Lemma 4.2: The ineffective edge set E− is empty during the first
iteration in Algorithm 1. □

Theorem 4.1: At every iteration in Algorithm 1, the constraint
graph ❶ is points-to saturated after processing simple constraints
(line 13) and ❷ is constraint saturated after processing complex
constraints on unsaturated nodes (line 14). □

Proof: We prove the theorem by induction.

For the first iteration. ❶: By Lemma 4.2, the first iteration
processes the entire essential-edge-covered graphG′ = {V ′, E ′, 𝑝𝑡𝑠 ′}
with an essential edge set E+ = {𝑒 | 𝑒 ∈ 𝑜𝑢𝑡 (𝑛) ∧ 𝑝𝑡𝑠 (𝑛) ≠ ∅}. By
Lemma 4.1, the subgraph G′ will reach a points-to saturated state
after simple constraints processing. To prove the whole graph G
will also be points-to saturated, it is equivalent to show that for
nodes 𝑛 ∉ V ′, 𝑝𝑡𝑠 (𝑛) = ∅: By contradiction, if there exists a node
𝑛 ∉ V ′ ∧ 𝑜 ∈ 𝑝𝑡𝑠 (𝑛), by the transitivity of constraint graph [18],
there exists a path from address taken node of 𝑜 to node 𝑛. However,
since E+ includes all the address taken nodes’ outgoing edges, node
𝑛 should also be included in V ′ by definition, which contradicts
with 𝑛 ∉ V ′. ❷: According to Algorithm 1, the unsaturated node

set V+ = {𝑣 | 𝑝𝑡𝑠 (𝑣) ≠ ∅} after processing simple constraints at
line 13. It is obvious that the graph reaches a constraint saturated
state after processing complex constraints onV+ as no edge needs
to be inserted for node 𝑛 whose points-to set is empty.

Combining ❶ and ❷, theorem 5.1 holds at the first iteration.

Suppose theorem 4.1 holds for the n-th iteration.

For the n+1-th iteration. We denote the constraint graph at
n-th iteration before inserting new edges as G𝑛 = {V𝑛, E𝑛, 𝑝𝑡𝑠𝑛} ,
the constraint graph at current iteration before inserting new edges
as G𝑛+1 = {V𝑛+1, E𝑛+1, 𝑝𝑡𝑠𝑛+1} and the causality graph processed
at current iteration as G∗

𝑛+1 = {V
∗
𝑛+1, E

∗
𝑛+1, 𝑝𝑡𝑠

∗
𝑛+1}

❶: According to Algorithm 1 and Algorithm 4, the essential edge
set E+

𝑛+1 = E𝑛+1 − E𝑛 . To prove that a points-to saturated state will
be reached, we prove the following two conditions hold:

(1) for node 𝑣 ∈ V𝑛+1 − V∗𝑛+1, 𝑝𝑡𝑠𝑛 (𝑣) = 𝑝𝑡𝑠𝑛+1 (𝑣) and thus
need not to be processed, and

(2) the pruning on G∗
𝑛+1 by removing ineffective constraints in

E−
𝑛+1 is sound.

For (1), assume there exists a node 𝑣 ∈ V𝑛+1 −V∗𝑛+1 and Δ𝑛+1 =
𝑝𝑡𝑠𝑛+1 (𝑣) − 𝑝𝑡𝑠𝑛 (𝑣) ≠ ∅. By the transitivity of constraint graph,
for 𝑜 ∈ Δ𝑛+1, there exists a path from the address taken node 𝑜 ′ to
𝑣 (denoted as a set P = {𝑜 ′ → 𝑣1, 𝑣1 → 𝑣2, ..., 𝑣𝑥 → 𝑣𝑦, 𝑣𝑦 → 𝑣}).

Case 1: If for every 𝑒 ∈ P, 𝑒 ∉ E+
𝑛+1, then 𝑒 ∈ E𝑛 . By induction

hypothesis, the 𝑛-th iteration reached the points-to saturated state,
thus 𝑜 ∈ 𝑝𝑡𝑠𝑛 (𝑣) since there is a path P between 𝑜 ′ and 𝑣 , which is
contradictory to the assumption 𝑜 ∈ Δ𝑛+1.

Case 2: If there exists a 𝑒 ∈ P, and 𝑒 ∈ E+
𝑛+1, then by definition

𝑣 ∈ V∗
𝑛+1 and 𝑣 is in the causality graph, which is contradictory to

the assumption 𝑣 ∈ V𝑛+1 −V∗𝑛+1.
For (2), assume there exists an edge 𝑒 ∈ E−

𝑛+1 and by processing
it, which is to compute 𝑝𝑡𝑠𝑛+1 (𝑒.𝑑𝑠𝑡) = 𝑝𝑡𝑠𝑛+1 (𝑒.𝑠𝑟𝑐) ∪ 𝑝𝑡𝑠𝑛 (𝑒.𝑑𝑠𝑡),
Δ𝑛+1 = 𝑝𝑡𝑠𝑛+1 (𝑒.𝑑𝑠𝑡) − 𝑝𝑡𝑠𝑛 (𝑒.𝑑𝑠𝑡) ≠ ∅. Since, by definition,
𝑝𝑡𝑠𝑛+1 (𝑒.𝑠𝑟𝑐) − 𝑝𝑡𝑠𝑛 (𝑒.𝑠𝑟𝑐) = ∅ as 𝑒 is an ineffective edge. To
satisfy Δ𝑛+1 ≠ ∅, we have 𝑝𝑡𝑠𝑛 (𝑒.𝑠𝑟𝑐) ⊈ 𝑝𝑡𝑠𝑛 (𝑒.𝑑𝑠𝑡). However,
since 𝑒 ∈ E−

𝑛+1, by definition 𝑒 ∉ E+
𝑛+1, which equals E𝑛+1 − E𝑛 .

We can conclude that 𝑒 ∈ E𝑛 . By induction hypothesis, we have
𝑝𝑡𝑠𝑛 (𝑒.𝑠𝑟𝑐) ⊆ 𝑝𝑡𝑠𝑛 (𝑒.𝑑𝑠𝑡) and 𝑒.𝑑𝑠𝑡 is reachable from 𝑒.𝑠𝑟𝑐 by
𝑒 ∈ E𝑛 and G is points-to saturated, which is contradictory to
the assumption 𝑝𝑡𝑠𝑛 (𝑒.𝑠𝑟𝑐) ⊈ 𝑝𝑡𝑠𝑛 (𝑒.𝑑𝑠𝑡).

❷: According to Algorithm 3 and Algorithm 1, the set of unsatu-
rated nodes V+

𝑛+1 = {𝑣 | 𝑝𝑡𝑠𝑛+1 (𝑣)−𝑝𝑡𝑠𝑛 (𝑣) ≠ ∅}. It is obvious that
the algorithm will reach constraint saturated state after processing
𝑣 ∈ V+

𝑛+1. By induction hypothesis, in the previous iteration after
inserting new edges, the constraint graph is constraint saturated
and thus for 𝑣 ′ ∈ {𝑣 | 𝑝𝑡𝑠𝑛+1 (𝑣) = 𝑝𝑡𝑠𝑛 (𝑣)}, they need not to be
processed in the current iteration.

Combining ❶ and ❷, Theorem 4.1 holds at the 𝑛 + 1-th iteration
provided that Theorem 4.1 holds in 𝑛-th iteration.

Theorem 4.2: Algorithm 1 guarantees the global fix point. □

Proof: Wedenote the constraint graph in the final iteration before
inserting new edges as G𝑓 = {V𝑓 , E𝑓 , 𝑝𝑡𝑠𝑓 } and the constraint
graph in the final iteration after inserting new edges as G′

𝑓
=

{V𝑓 , E ′𝑓 , 𝑝𝑡𝑠𝑓 } Since Algorithm 1 returns when the essential edge
set E+

𝑓
= E ′

𝑓
− E𝑓 = ∅, no edge is inserted by processing new

complex constraints. Thus G𝑓 = G′
𝑓
. By Theorem 4.1, G𝑓 is points-

to saturated and G′
𝑓
is constraint saturated and since G𝑓 = G′

𝑓
,

the final output G′
𝑓
are both points-to saturated and constraint

saturated.

5 EVALUATION

We have implemented a context-sensitive, field-sensitive pointer anal-
ysis for C/C++. The implementation is based on the LLVM [14]
framework and works at LLVM IR level. In our evaluation, we com-
pared Pus with Wave Propagation (Wp) and Deep Propagation
(Dp) [23]. The two state-of-the-art algorithms are widely adopted
in the most recent pointer analysis works [2, 3, 9].

In our implementation, we adopted the sparse bitvector to store
points-to set information. We did not compare Puswith some other
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Table 2: Benchmarks and the constraint graph metrics

(#Pointer, #Object and #Assign shows the number of point-

ers, objects and assignment statements in the tested pro-

gram respectively)

.

Benchmark #LoC #Pointer #Object #Assign
memcached 18.9K 15.2K 3.8K 6.0K
darknet 30.1K 91.3K 26.0K 44.1K
flatbuffers 156.1K 210.2K 83.5K 2659.5K
nfs-ganesha 251.5K 114.1K 33.5K 768.6K
curl 142.2K 70.0K 14.1K 578.5K
sqlite3 245.4K 129.3K 23.6K 1024.4K
keydb-server 259.1K 78.9K 20.0K 230.1K
vim 334.9K 267.9K 51.1K 1826.9K
cpython 564.9K 171.5K 52.2K 1770.0K
postgreSQL 1.0M 496.7K 106.3K 4677.6K

recent techniques (e.g., D4 [18] and Dea [15]) in our evaluation as
they are solving orthogonal issues to Pus. In fact, we believe that
Pus can be incorporated with these techniques to provide a faster
underlying solving algorithm. For instance, Dea used Wp in its
implementation, which can be directly replaced with Pus.

The goal of our evaluation is to answer the following research
questions.
• RQ1: How much reduction can Pus achieve by only pro-
cessing the causality subgraph in each iteration? In other
words, how large is the causality subgraph for real-world
applications when compared to the entire constraint graph?
• RQ2: In terms of performance, how much faster is Puswhen
compared with state-of-the-art algorithms, namelyWp and
Dp?

All our experiments are conducted on a commodity personal
desktop embedded with an Intel i7-9750H processor with 6 cores
@ 2.6GHz and 128GB RAM.

Benchmarks: We selected 10 representative open-sourced real-
world large projects as the benchmarks to evaluate Pus. Many of
them have also been studied for the similar purpose in previous
publications [23]. And they are all popular open-source projects
varying in size. Metrics of those benchmarks and their constraint
graphs are listed in Table 2. The selected benchmarks are medium-
to large-sized projects with sizes ranging from 18.9K to 1.0M lines
of code.

5.1 RQ1: Reduction Achieved by Pus

To answer the first research question, we ran context-insensitive

Pus on the benchmarks in Table 2 and collected statistics about the
size of the causality subgraph processed by Pus in each iteration.
The detailed report is listed in Table 3. Table 3 compares the size of
different causality subgraphs and analyzes the relative sizes of the
causality subgraphs compared with the entire constraint graph.

We report the minimal, maximum and average number of nodes
and edges processed by Pus to summarize the characteristics of
the causality subgraph because a different causality subgraph is
computed by Pus in each iteration.

As shown in Table 3, on average a causality subgraph only con-
tains around 3% of the nodes and 2.7% of the edges in the respective
whole constraint graph. For most of the benchmarks, the size of
the causality subgraph can be as small as just 1 or 2 nodes and
edges, even for large benchmarks (e.g., cpython and postgreSQL)
with more than 500K nodes and 300K edges. The minimal causal-
ity subgraph is usually observed in the last few iterations when
the points-to sets of most of the nodes in the constraint graph
are saturated. The result gives us more confidence on the perfor-
mance improvement can be achieved by Pus, as algorithms likeWp
would still need to re-sort the entire constraint graph even when
the number of effective nodes can be as low as 1.

The result also shows that for most of the benchmarks, even the
largest causality subgraph usually contains no more than 30% of
the nodes and 30% of the edges in the complete constraint graph.
More importantly, according to our observation, large causality
subgraphs do not occur frequently, which is also why the average

Table 3: The size of the causality subgraphs processed by Pus

(%Ratio compares the size of the causality subgraphwith the

whole constraint graph)

.

Benchmark causality Subgraph
#Node %Ratio #Edge %Ratio

memcached
min 1 0.01% 2 0.02%
max 3,538 18.59% 11,175 75.53%
avg. 197 1.04% 703 4.74%

darknet
min 1 0.00% 1 0.00%
max 15,365 13.10% 34,406 31.10%
avg. 1,990 1.70% 7,171 6.48%

flatbuffers
min 7 0.00% 11 0.00%
max 48,533 16.52% 230,758 2.54%
avg. 6,679 2.27% 16,212 0.18%

nfs-ganesha
min 1 0.00% 2 0.00%
max 28,865 20.07% 62,491 16.61%
avg. 726 0.50% 2,590 0.69%

curl
min 2 0.00% 2 0.00%
max 14,743 17.48% 51,365 7.95%
avg. 3,341 3.96% 17,688 2.74%

sqlite3
min 1 0.00% 2 0.00%
max 34,642 23.32% 120,412 10.79%
avg. 9,113 5.97% 30,938 2.77%

keydb-server
min 2 0.00% 2 0.00%
max 21,147 21.36% 44,993 16.60%
avg. 4,865 4.91% 12,229 4.51%

vim
min 2 0.00% 6 0.00%
max 68,600 21.50% 235,240 12.42%
avg. 10,512 3.29% 39,570 2.09%

cpython
min 16 0.00% 16 0.00%
max 52,424 23.44% 139,810 7.53%
avg. 9,885 4.42% 33,676 1.81%

postgreSQL
min 1 0.00% 1 0.00%
max 114,410 18.97% 333,764 6.90%
avg. 13,241 2.20% 46,621 0.96%

avg. - 3.02% - 2.69%
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(a) The footprint of curl 

(b) The footprint of sqlite3 

New Indirect 
Targets Resolved

New Indirect 
Targets Resolved

Figure 5: The footprint of the size of the causality subgraphs

processed by Pus at each iteration when analyzing curl and

sqlite3.

number of nodes and edges in the causality graph is still low despite
the existence of some relatively large subgraphs. Our experiments
shows that large causality graphs normally occur in the first few
iterations at the beginning of the computation and/or after indirect
calls are resolved and new nodes are inserted. These observations
are validated in Fig. 5 and will be elaborated in the following para-
graphs.

In order to gain insights into the entire ‘lifetime’ of the causality
subgraphs and to understand how it ‘evolves’ as the analysis pro-
ceeds, we include two complete (also typical) footprints that show
how the sizes of causality subgraphs fluctuate in each iteration
of the whole solving process. The two data sets are collected by
evaluating Pus on curl and sqlite3 and are visualized in Fig. 5 (a)
and Fig. 5 (b) respectively. It is clear that Fig. 5 (a) and Fig. 5 (b)
exhibit several common patterns:
• The size of the causality graph normally increases greatly
as new indirect calls are resolved. This is because each time
when an indirect call is resolved, the newly resolved tar-
get functions introduce many unprocessed nodes and con-
straints into the constraint graph. Those unprocessed nodes
are likely to invalidate a large portion of the constraint graph,
which in turn increases the size of the causality subgraph
for the next iteration.
• After new nodes are inserted, the size of the causality sub-
graph normally reduces sharply after several iterations. The
size then remains small until another set of new indirect
calls get resolved. This indicates that the solving process
converges quickly after a few iterations on most of the nodes,

Table 4: Performance of Pus comparing with wave propaga-

tion (WP) and deep propagation (DP) when running context-

insensitive pointer analysis (%↑ shows the speedup).

Benchmark PUS WP DP
time %↑ time %↑

memcached 0.04s 0.35s 775.00% 0.1s 150.45%
darknet 0.34s 1.82s 435.29% 1.00s 194.12%
flatbuffers 95.9s 195.72s 104.08% 124.87s 30.28%
nfs-ganesha 11.17s 48.83s 327.15% 26.48s 137.06%
curl 18.45s 29.45s 59.62% 28.29s 53.27%
sqlite3 46.48s 98.77s 125.50% 128.73s 176.96%
keydb-server 4.84s 7.58s 56.61% 5.76s 19.00%
vim 81.17s 183.81s 126.41% 193.70s 138.55%
cpython 400.66s 619.55s 54.61% 655.91s 63.70%
PostgreSQL 1,381.2s 1,757.9s 27.27% 2,001.6s 44.91%
avg. - - 3.09× - 2×

and then gradually approach the fixed point by only process-
ing a very small number of nodes at each iteration.

Table 3 and Fig. 5 provide strong evidence to support our key
observation: The size of causality subraphs are small and updates on
the points-to information of certain nodes only affect very limited
set of neighboring nodes. From these experiments, we can easily
understand why Pus is able to achieve such a dramatic reduction by
analyzing small causality subgraphs instead of the entire constraint
graph at each iteration.

5.2 RQ2: The Performance Improvement

Achieved by Pus

Puswas evaluated in both context-insensitive and context-sensitive
(𝑘-callsite, with 𝑘 = 1) settings. and compared with Wp and Dp.
The experimental results are elaborated in Section 5.2.1 (when run-
ning context-insensitive analysis) and Section 5.2.2 (when running
context-sensitive analysis).

5.2.1 Improvement when Running Context-Insensitive Pointer Anal-
ysis. In the context-insensitive setting, the execution time of each
algorithm when running on different benchmarks is given in Ta-
ble 4.

In summary, Pus achieves a significant performance improve-
ment compared to Wp and Dp, with more than 2× speedup on
average. For certain benchmarks, namely memcached and darknet,
Pus can be 4× as faster thanWp. When compared with Dp, Pus is
2× faster on more than half of the tested benchmarks (namelymem-

cached, darknet, nfs-ganesha, vim and sqlite3). Even in the worst
cases, Pus can still be more than 20% faster than Dp andWp.

To understand how long it takes for Pus to finish one iteration,
we also collected the analyzing time spent by Pus andWp on every
iteration. The visualized graph (when analyzing curl) is shown in
Fig. 6. From Fig. 6, it is clear that Pus is faster than Wp in every

iteration as Pus only processes a small causality subgraph. Note
that Dp is omitted in Fig. 6. It is because while Pus and Wp use
a similar two-phases structure and their solving processes can be
easily aligned and compared. Dp adopts a different solving strategy
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Figure 7: Thememory usage breakdown for Pus,Dp andWp

on flatbuffers (in𝑀𝐵).

which makes the comparison between Pus and Dp meaningless
when just looking at one iteration.

In our experiments, we also made a similar observation as found
in the original Wp and Dp paper [23]. The original paper observes
that Wp has an advantage over Dp when analyzing relatively large
program asWp is faster than Dp on sqlite3, vim and cpython and Dp
is faster thanWp on relatively smaller programs such asmemcached,
redis-server and nfs-ganesha. The one exception is flatbuffer, which
has a relatively small number of lines of code (48.9K) while its
corresponding constraint graph is nearly as big as that of large
programs such as vim. However, unlike Wp and Dp, which have
different advantages when analyzing programs of different scales,
Pus outperforms bothWp andDp on all the tested benchmarks with
the sizes ranging from 18𝐾 to over 1𝑀 lines of code. Pus can be 8×
faster and achieves at least a 19% speedup. The fact that Pus is able
to outperform both Wp and Dp on benchmarks of varying sizes
(both large and small) indicates that Pus is a much more general
algorithm that can be applied to all kinds of programs.

In addition to the performance, we also evaluated the memory
efficiency of Puswhen compared toDp andWp. Fig. 7 shows typical
memory usage breakdowns for Pus, Dp andWp.

As mentioned in Section 3, Pus can greatly reduce the memory
consumption because Pus does not rely on a cached points-to set
to avoid redundant computation. The memory usage breakdown
in Fig. 7 indicates that for both Wp and Dp, the memory used to
store points-to sets (including cached points-to sets) accounts for

Table 5: Performance of Pus comparing with wave propa-

gation (WP) and deep propagation (DP) when running 𝑘-

callsite sensitive (𝑘 = 1) pointer analysis (%↑ shows the

speedup).

Benchmark PUS WP DP
time %↑ time %↑

memcached 0.08s 0.68s 708.33% 0.26s 210.71%
darknet 1.09s 6.36s 484.30% 5.33s 389.81%
flatbuffer 673.39s 4580.5s 580.22% 2542.8s 277.62%
nfs-ganesha 33.28s 367.97s 1005.82% 459.54s 1281.0%
curl 37.58s 266.98s 610.40% 258.3s 587.31%
sqlite3 112.44s 639.64s 468.88% 961.3s 754.96%
keydb-server 20.38s 77.51s 280.42% 79.66s 290.98%
vim 367.62s 2587.1s 603.75% 3647.1s 892.09%
cpython 367.33s 3358.9s 814.43% 9559.7s 2502.5%
PostgreSQL OOM OOM -% OOM -%
avg. - - 7.17× - 8.99×

the majority of the memory used to analyze a program. SinceWp
requires an extra copy of the points-to set for every node and every
edge, it requires the largest-sized memory to analyze the same
program. Dp is more memory efficient when compared to Wp as it
only requires an extra cached points-to set for each node, but even
for Dp, the memory used to store the points-to set still accounts
for the largest portion of entire used memory. Interestingly, the
memory used by Dp to store the points-to set alone is larger than
the entire memory consumption needed by Pus. This shows the
great advantage of Pus over compared methods as it can achieve
significant performance improvement while consuming much less
memory.

5.2.2 Improvement when Running Context-Sensitive Pointer Anal-
ysis. In the context-sensitive setting (𝑘-callsite, with 𝑘 = 1), the
execution time of each algorithm when running on different bench-
marks is given in Table 4.

Surprisingly, Pus even achieved much higher speedups when
solving context-sensitive constraints when compared to context-
insensitive constraints. The results shows that on average, Pus is
almost 7× and 9× faster thanWp and Dp respectively. For certain
benchmarks, Pus can be more than 10× faster than Wp and Dp
(ganesha) and more than 25× faster than Dp (python). On all bench-
marks, Pus is at least 2× faster than both Wp and Dp. The result
indicates that Pus has a great potential to be adopted widely as the
computing power becomes stronger and stronger and more precise
pointer analysis is desired in the future.

The reason why Pus is able to significantly outperform the state-
of-the-art algorithms, especially when solving context-sensitive
pointer analysis, is still rooted in our key insight that constraint
graphs are sparsely connected. This property becomes even more es-
sential in context-sensitive pointer analysis as one node in context-
insensitive pointer analysis can correspond to multiple nodes in
context-sensitive pointer analysis because the same variable is now
analyzed separately under different contexts. This makes the con-
straint graph sparser. Thus, the effect brought by the update of one
node becomes more local as it can only affect nodes under some
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particular contexts whereas one node can affect many neighbors in
context-insensitive pointer analysis, even when the neighboring
nodes represent variables in a mismatched context.

Despite all kinds of optimizations made when designing Pus, we
still found it challenging to run context-sensitive pointer analysis
on extremely large benchmarks using only commodity hardware.
As the 𝑘-limiting for context-sensitive pointer analysis increases,
the complexity of the algorithm and the size of the constraint graph
grows exponentially, which makes the algorithm hard to scale
on large benchmarks. During the experiments, we observed that
more than 5 million nodes were created in the constraint graph for
PostgreSQL in the first 5 minutes, which rapidly drains the memory
of our machine. A more powerful machine is needed for evaluating
Pus on PostgreSQL.

6 RELATEDWORK

Pointer analysis is a fundamental building block for static program
analyses and compiler optimizations. As such, precise and scalable
pointer analysis has long been sought after as a holy grail that might
unlock all secrets in the program analysis universe. Unfortunately,
such a pointer analysis algorithm has yet to be found. All existing
implementation of pointer analysis must make some trade off.

Across the decades, Andersen’s inclusion based pointer analysis
has emerged as the most popular pointer analyses [1]. Many works
have been proposed to improve the base Andersen’s analysis. Most
of the previous research abstracts pointer analysis as a constraint
graph and propagates the points-to information until a global fixed
point. Heintze et al. [11] introduced a way to avoid the cost of
computing the full transitive closure of the constraint graph. Instead
a dynamic transitive closure is computed on demand and graph
reachability queries are used to resolve points-to sets. As a result,
cycle detection is achieved essentially for free as a result of the
graph reachability queries. However this technique also introduces
the potential for redundant work across reachability queries. Later
works [10, 21, 22] topologically sort the constraint graph to reduce
redundant points-to set propagation. Pereira et al. [23] proposed a
new constraint solving algorithm, wave propagation, by separating
the algorithm into three phases; collapsing of cycles, points-to
propagation and insertion of new edges. These three phases are
performed as a wave and repeated until a fixed point is reached.
Pus advances the state-of-the-art by performing SCC detection and
points-to set propagation on the causality subgraph, thus avoiding
redundant computation in each iteration.

As the difficulty in developing an efficient constraint solving
algorithm remains, researchers recently turned their attention to
tackle the problem at new angles. D4 [18] first introduced an in-
cremental algorithm for inclusion-based pointer analysis to enable
differential pointer analysis on code changes. The algorithm of D4
is orthogonal to ours and Pus can be efficiently integrated with D4
to speed up its bootstrapping constraint solving process. DEA [15]
introduced a faster algorithm to deal with positive-weight cycle in
field-sensitive pointer analysis, while it still relies on wave propa-
gation to compute the fixed point.

Another line of research formulates pointer analysis as a CFL-
reachability problem. Reps et al. [25] modelled the flow-insensitive
pointer analysis into a CFL-reachability problem. Spath et al. [29]

proposed a flow- and context-sensitive demand-driven pointer anal-
ysis that models the pointer analysis as an IFDS problem, which
then can be solved by CFL-reachability. This line of research is
orthogonal to Pus, and Pus is more efficient when applications
frequently query pointer analysis results.

Graph simplification techniques can be applied to both constraint-
graph-based and CFL-reachability-based approaches to improve
their scalability. Fahndrich et al. [7] first showed that collapsing SCC
components in the constraint graph can significantly improve the
performance of inclusion based pointer analysis. Pearce et al. [21]
introduced an algorithm for online cycle detection. By keeping the
constraint graph topologically sorted, cycle detection need only
be run when a new edge violates the existing topological ordering.
Since detecting cycles upon edge insertion was proven to be too
costly, Pearce et al. [22] introduced an efficient field sensitive PTA
that occasionally checks for and collapses cycles in the constraint
graph. Hardekopf et al. [10] introduced Lazy Cycle Detection (LCD)
and Hybrid Cycle Detection (HCD). LCD reduces runtime overhead
even further by selectively triggering cycle detection only when
identical points-to sets are discovered during transitive closure
computation. HCD introduces an offline linear-time graph prepro-
cessing stage that allows the online pointer analysis to detect cycles
without the need for graph traversal at all. Pus extends the above
techniques by not only applying general graph optimization tech-
niques but also leveraging unique properties of constraint graph to
only performing the SCC detection on causality subgraph. Thus,
Pus can dynamically prune off the most ineffective edges to avoid
redundant points-to set propagation.

Recent work by Li et al. [17] proposed to simplify the input
labeled graph in a CFL-reachability problem by eliminating use-
less graph edges. Pus is similar to this work from a very high-
level. However, this work primarily optimize the labeled graph in
CFL-reachability problems while Pus focuses on simplifying the
constraint graphs in pointer analysis.

Besides improving the solving algorithm, researchers have also
proposed to use Datalog [5, 27, 28] for fast and easy pointer anal-
ysis implementation. While the experimental result indicates a
great potential along the direction, fully customized pointer anal-
ysis solvers are still desired and used by many of the most recent
works [18, 26, 32] as they are easier to be extended and tailored for
different needs.

7 CONCLUSION

We have presented Partial Update Solver (Pus), a new constraint
solving algorithm for inclusion-based pointer analysis. Pus signifi-
cantly advances the state-of-the-art in reducing the time complexity
by a quadratic factor. The key insight is that only a small portion of
the constraint graph is effective for the points-to set propagation,
which can be extracted efficiently into a subgraph, called causality

subgraph. We have formally proved the correctness of Pus and
extensively evaluated the performance of Pus on a wide range of
real-world large complex programs. Our experimental results indi-
cate that Pus is high scalable and significantly more efficient than
the state-of-the-art Wp/Dp algorithms. Pus achieves more than
7× (2×) speedups when comparing to Wp/Dp in solving context-
sensitive and context-insensitive pointer analyses respectively.
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