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ABSTRACT 
This paper presents a methodology to detect an object with an 
accelerometer potentially among many other moving objects in a 
camera scene. By matching sensor readings from a wearable 
accelerometer with analogous readings from a single camera or 
plurality of cameras, we detect instances of the same physical 
movement that both modalities capture. This has a wide range of 
potential applications in the cyber-physical systems domain such 
as identification, localization, and detecting context for activity 
recognition. We present an approach to project data from camera 
frames into accelerometer frames, where they share the same 
physical representation, allowing for comparing and determining 
similarities between the two modalities by using computational 
algorithms in the cyber world. This is challenging as depth is 
unknown when using a single 2D camera. We translate camera 
measurements into the acceleration physical domain and acquire 
an estimated depth, when the depth is not varying significantly 
during the motion. We model this translation as an optimization 
problem to find the optimal depth that maximizes the similarity 
between readings of the camera and accelerometer. Additionally, 
we discuss a potential solution with multiple cameras that works 
for arbitrary varying depth motions. Experimental results 
demonstrate that the system can detect matching between data 
stemming from physical movements observed by a wearable 
accelerometer and a single camera or plurality of cameras. 
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1 INTRODUCTION 
Tagging wearable accelerometers in camera scenes by detecting 
whether they measure the same movement can unlock many new 
privacy-aware sensing and computing paradigms. Cameras and 
wearable sensors, such as accelerometers, have received much 
attention in recent years due to their ubiquity and ability to 
support and enable a large number of applications. In particular, 
inertial measurement units (IMU) containing accelerometers and 
gyroscopes are becoming increasingly accessible in a variety of 
smart devices including smart watches [1]. Both accelerometers 
and cameras are widely used in different applications such as 
activity recognition, localization, and object tracking [2-4].  

However, combined use of cameras and accelerometers has 
been limited because of challenges found in translation of signals 
from one sensing modality to another for fusing them together. 
Since the camera and accelerometer measure different aspects of 
human motion in different physical domains, translation of one 
modality to the other has continually inhibited development of 
new applications.  

One such application enabled through hybrid use of camera 
and wearable accelerometer data would be privacy aware 
identification, wherein a user can enable the tracking of his/her 
wearable accelerometer by a camera merely by providing the 
sensor stream from the accelerometer to the cloud. Signal fusion 
techniques would leverage information captured from the 
cameras and the wearable accelerometer to identify which camera 
is observing the user and determine the boundaries of the 
movements of the wearable accelerometer in that camera’s frame. 
This method of tracking would be privacy aware as the cameras 
would not need to process RGB information to perform facial or 
object recognition, but instead leverage the information collected 
from the accelerometer to identify and track the specific user. 
Another example is to monitor when a particular device with an 
integrated accelerometer leaves the environment without 
authorization, which is an important asset tracking application. 
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Figure 1. The overview of the matching algorithm. Both the camera and the wearable accelerometer capture the same physical 
movement, but it is expressed with different units and patterns. Information translation successfully brings these two 
modalities into the same space where they share same units and similar patterns

In these applications, the challenge is to find the match between 
cameras and an accelerometer and then tag the accelerometer in 
the view of those cameras. Such a technique can also enable 
cameras to only focus on important parts of the video frames for 
image processing by ignoring the irrelevant segment or segments 
that may carry sensitive information and are subject to privacy 
concerns. These are merely a few of many potential examples. 
Effective matching of cameras and wearable accelerometers may 
likely enable many more such applications. 

The fact that cameras and wearable accelerometers offer 
completely dissimilar observations of the same physical 
movement constitutes the major difficulty in identifying their 
relationship. Cameras capture movements in a two-dimensional 
space, with kinematics represented as changes in pixels and with 
the frame of view and reference remaining potentially unchanged. 
Accelerometers, on the other hand, capture movements in a 3-
dimensional space, with kinematics represented in m/s2. 
Additionally, in the case of accelerometers, both acceleration due 
to gravity and due to a subject’s motion are captured [2]. The 
frame of view or reference of accelerometers also changes due to 
the placement of wearable sensors on moving limbs. These 
challenges impede effective and direct comparison of data 
captured from cameras and accelerometers when trying to 
determine whether both modalities are reporting the same 
movement. Thus, algorithms are required to intertwine the 
physical models of the sensor and the camera in order to bring the 
two sensor modalities into the same physical or cyber domain, so 
that they can be compared to each other. 

Most prior works investigating fusion of cameras and wearable 
accelerometers simplify these challenges by requiring either a 
fixed or known placement of the sensors or fixed or known 
movements [4]. The fixed or known placement of wearable 
accelerometer and cameras assists in determining the relative 
position between the frames of the two modalities to translate one 
modality to another. This places burden on users by asking them 
to follow certain placement instructions or to provide the 
placement information to the system. Another approach is to limit 
the users to only particular movements, such as walking and 
waving a hand. With these restrictions, the techniques build and 
use movement models leveraging unique and gesture-specific 
features in order to recognize matching between the modalities. 

These limitations largely restrict the potential of this technology 
and fail to establish a strong relationship between two modalities. 

In this paper, we focus on detecting whether the data captured 
by a camera or plurality of cameras and an accelerometer describe 
the same movement, but not focus on object tracking algorithms 
using cameras. There are many object tracking algorithms based 
on different notions, such as optical flows [5-6]. We assume that 
the algorithm used to track objects in camera frames works well, 
the camera is stationary, and its placement is known, but there is 
no need to fix the location or orientation of the  accelerometer.  

The overview of our proposed method is illustrated in Figure 1. 
Our approach brings these two physical modalities into the same 
space, which is the domain of physical acceleration, and enables 
direct comparison between the camera and accelerometer data. 
With multiple RGB cameras, it is possible to recover a 3-
dimensional model of an object and from that calculate the 3D 
acceleration in order to compare it with the accelerometer’s direct 
measurement. The depth information is also available in case of 
using depth cameras such as Microsoft Kinect. However, with a 
single RGB camera, it becomes a very difficult task since it is not 
possible to retrieve depth information. To address this issue we 
propose a method to use a single camera to estimate depth for 
motions in which depth variation is limited. We do not need to 
define and use higher-level features specific to certain kinds of 
movement, instead we rely only on the raw data. Moreover, a 
possible solution in the multiple camera scenario is given that 
works for arbitrary motions that may include large depth changes. 
Using acceleration as the fingerprint of a movement, this method 
finds if the camera is seeing the movement measured by the 
accelerometer through the information translation. 

The contributions of this paper are the following: 
• An algorithm is proposed to detect whether a single camera 

and an accelerometer are observing the same motion while depth 
is unknown. The solution is offered for two cases including 
constant depth and limited varying depth. The method does not 
require knowledge of orientation or a specific placement of 
accelerometers.  

• For the case of constant or limited varying depth, even using 
a single camera, this method can also estimate the depth of the 
object with respect to the camera. 

• The potential solution for the general case of using multiple 
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cameras is discussed, which can work for any arbitrary 
movement. This method takes advantage of gravity and uses it as 
a key to bring cameras and accelerometers into the same space, 
thus avoiding the use of complicated filters to eliminate gravity 
from acceleration. 
• Performance of the proposed method is tested experimentally 
with an inexpensive Sony PS Eye camera and wearable 
accelerometers. 

The remainder of this paper is organized as follows. The related 
works are reviewed in Section 2. The preliminaries and the 
proposed algorithm are introduced in Sections 3 and 4 
respectively. Experimental results are illustrated in Section 5 
followed by a conclusion in Section 6. 

2 RELATED WORKS 
Many researchers fused cameras and accelerometers with the goal 
of accurate position or orientation estimation as well as 
localization [2,7-10]. Although this type of data fusion needs to 
bring the two modalities into the same domain in order to to 
combine their measurements, its ultimate goal is different from 
our work which is tagging the accelerometer in the camera 
frames. Multiple solutions based on the fusion of these two 
modalities were proposed to solve the simultaneous localization 
and mapping (SLAM) problem in robotics [11-12]. A typical 
camera and accelerometer based solution to the SLAM problem 
estimates the pose and location of a robot. Researchers presented 
a localization, mapping and self-calibration algorithm for visual 
and inertial sensors including accelerometer and gyroscope [13]. 
They applied an unscented Kalman filter (UKF) and tried to 
estimate the real pose and the motion of sensors over time. There 
are very few methods that have performed the fusion of camera 
and inertial sensor measurements without a filter-based approach. 
For instance, a batch method that performs SLAM from image and 
inertial measurements addressed the data fusion problem by 
minimizing a cost function using the Leven-Marquardt algorithm 
[14]. A closed-form solution for orientation, speed, and 
accelerometer bias determination by fusing camera and 
accelerometer data was proposed based on a non-standard 
observability analysis to considers system nonlinearities [15].  

Data fusion of camera and accelerometer has provided 
opportunities in augmented reality (AR) and virtual reality (VR) 
fields as well [16-17]. In AR, the main challenge is to accurately 
estimate parameters such as velocity, position, and orientation of 
human subjects. In prior work, researchers integrated a camera 
and an inertial sensor including gyroscope and accelerometer into 
a single device, providing a hardware-synchronized stream of 
video and inertial data. The investigators used an extended 
Kalman filter (EKF) to fuse these two modalities to obtain camera 
pose tracking in real time [17]. The goal of these techniques is to 
enhance the accuracy of the algorithms by leveraging information 
from different modalities. 

On the other hand, tagging accelerometer in the camera frame, 
which is the main goal of the current study, mainly answers the 
following question: is the data stream from a particular 
accelerometer matched with an object seen by the camera? The 
correlation between signals from the camera and accelerometer 

worn by the person was used to identify a person out of many 
people in a camera view [18]. This method requires some 
knowledge about the relationship between the coordinate systems 
of the camera and the accelerometer. A different investigation 
achieved object matching between the two modalities by using an 
inverted pendulum model of human gait to model walking [4]. By 
attaching a smartphone to a user’s belt, the investigators were 
able to record acceleration and could further generate speed from 
the acceleration using the inverted pendulum model and matched 
it to the speed sensed in the camera frame. Although the proposed 
method offers high accuracy, it only handles walking, and the 
accelerometers have to be placed at a certain location with a 
certain orientation. Both [18] and [4] assume that the objects’ 
depth is constant, and they do not discuss the challenges 
associated with varying depths. Researchers stressed the 
challenges brought by gravity interference from accelerometers, 
and attempted to compensate for it by adding the same effect to 
the cameras [19]. The correct value of gravity in camera data can 
only be computed when the distance of the object to the camera 
(also known as depth) is known. However, with a single regular 
RGB camera the depth is unknown. We overcome this limitation 
by estimating the depth automatically for motions that experience 
constant or limited-varying depth changes by modeling it as an 
optimization problem in which the similarity between readings 
from the camera and accelerometer is maximized.  

3 PRELIMINARIES 
In this section, we present the preliminaries required to identify a 
match between a wearable accelerometer and cameras. In other 
words, the algorithm should detect whether or not the motion 
measured by a specific accelerometer is seen by a camera. Our 
framework consists of two major components: 1) A tracking 
algorithm, which tracks objects in the cameras’ frames and 
calculates their accelerations, and 2) A tagging algorithm that 
detects if the motion of the tracked objects is matched with the 
motion sensed by an accelerometer. The proposed algorithm is a 
general-purpose matching algorithm, and requires minimal prior 
information about the setup and deployment details. Additionally, 
the proposed method can work with accelerometers typically 
available in smartphones, which makes it ubiquitously available. 
It also exhibits fast convergence time, thus enabling real-time 
operation. We use the Lucas-Kanade (LK) method [6] as our 
optical tracking algorithm and build our matching algorithm 
based on that. However, theoretically, any tracking algorithm 
should work as long as it exhibits similar or higher accuracy than 
the LK algorithm. 

3.1  Input Instances 
Our method receives data from cameras and a wearable 
accelerometer. These two inputs are modeled as follows: 

3.2.1  Input from Cameras. During the observation time from t1 
to tn (n > 1), n frames are captured by the camera; the timestamp 
for frame j (n ≥ j ≥ 1) is tj. The tracking algorithm generates sets 
of points Pi = {pi,j}, where pi,j=(x, y) represents the coordinates of 
object i in frame j at time tj. We then calculate the acceleration 
from these points. We denote the acceleration that is extracted 



 

 

from camera information for object i at frame tj as 𝑎𝑖,𝑗
𝑐 =

[𝑎𝑥,𝑖,𝑗
𝑐 ,𝑎𝑦,𝑖,𝑗

𝑐 ]𝑇, where 𝑎𝑥
𝑐  and 𝑎𝑦

𝑐  are accelerations in x and y 

directions in the 2D camera frame. Our approach attempts to 
translate cameras information into the accelerometer’s space by 
adding the effect of gravity interference to data obtained from the 
cameras (Section 4), so we denote the gravity-induced 
acceleration in the camera as �̃�𝑖,𝑗

𝑐  for object i at tj. 
3.2.2  Input from Cameras. During the same observation time 

from t1 to tn , more than n readings are generated by the 
accelerometer in our setup, because our cameras capture frames 
at 30Hz while accelerometers provide readings at 60Hz. We pick 
the closest reading to each timestamp tj when the frame j is 
recorded to synchronize the two data streams. We pick the earlier 
data point if there are two readings equally close to tj. We denote 
the synchronized acceleration sensed by accelerometer i as 𝑎𝑖,𝑗

𝑚 , 

where 𝑎𝑖,𝑗
𝑚 = [𝑎𝑥,𝑖,𝑗

𝑚 , 𝑎𝑦,𝑖,𝑗
𝑚 , 𝑎𝑧,𝑖,𝑗

𝑚 ]T represents the accelerometer-
sensed acceleration of object i closest to time tj in x, y and z 
directions of the local accelerometer frame. 

3.2  Camera to accelerometer Translation 
Framework 
The heart of our proposed method is translating camera readings 
into the same space as the accelerometer, where both modalities 
share the same units (m/s2), physical meaning, and dimensions. 
Frames generated by cameras are first processed by the LK object 
tracking algorithm to generate the trajectory of moving objects. 
Using tracks calculated by the optical object tracking algorithm, 
the camera-sensed acceleration is calculated (Section 4.1). After 
synchronization between camera and accelerometer readings, we 
use the synchronized data as inputs to the proposed matching 
algorithm. For a single camera scenario, camera-to-sensor 
translation (CST) is determined and used as the key method to 
bring the two modalities into the same space, where they can be 
compared to each other (Section 4.3). This method can restore the 
depth information by solving an optimization problem for 
movements that experience constant or limited-varying depth to 
the camera. A multiple-camera solution may also be utilized to 
restore depth information in arbitrary depth-varying motions and 
offers direct comparison between the two modalities (Section 4.3). 
Figure 2 describes the overall workflow of our proposed approach. 

4 CAMERA-ACCELEROMETER MATCHING 

ALGORITHM 
In this section, we describe the technical details on how to detect 
matching between readings from a camera and a wearable 
accelerometer by using information translation technique 
between the two modalities. We first introduce our approach 
using a single camera when objects are moving at a fixed depth 
and extend it to a limited depth- varying situation afterward. The 
general fusion algorithm that uses multiple cameras is discussed 
in Section 4.3. Based on the knowledge that accumulated error will 
become intolerable for accelerometers during the process of 
integration to obtain velocity or displacement, acceleration is 
directly used as the main feature to find the match between these 
two modalities. 

 
Figure 2. Overall workflow of the proposed method 

4.1 Extracting Linear Acceleration from a 
Camera 
We first need to estimate the acceleration 𝑎𝑖,𝑗

𝑐  of object i at each 
timestamp tj from its tracked position Pi={pi,j} observed by the 
camera; assume object i is moving with a uniformly accelerated 
motion from tj-1 to tj+1. This assumption is valid as long as the 
frame rate of the camera is sufficiently high. The lower bound 
required for the frame rate is about 20Hz based on our 
experiments on normal human movements. Based on this 
assumption, 𝑎𝑖,𝑗

𝑐  for object i in the camera view at time tj can be 
calculated using Equation 1. 

4.2 The Relationship between Pixels and 
Distance in Meters 
We use the pinhole camera model, which is a simple model for 
analyzing the camera’s geometric properties, to establish the 
relationship between pixels and distance in meters [20]. In Figure 
3, an object of size x meters at depth d meters from the camera’s 
optical center is observed in y pixels in a camera frame out of the 
Y total pixels of the field of view. f represents the focal length in 
meters and α is the angle of view, both of which are known 
parameters of a camera. Using this model, the relationship 
between y and x can be established by Equation 2. 
 

𝑥 =
2 tan

𝛼
2

∙ 𝑑

𝑌
∙ 𝑦 (2) 

𝑎𝑖,𝑗
𝑐 = [

𝑎𝑥,𝑖,𝑗
𝑐

𝑎𝑦,𝑖,𝑗
𝑐 ] = 2

Δ𝑡𝑗 ∙ Δ𝑝𝑖,𝑗+1 − Δ𝑡𝑗+1 ∙ Δ𝑝𝑖,𝑗

Δ𝑡𝑗 ∙ Δ𝑡𝑗+1
2 + Δ𝑡𝑗+1 ∙ Δ𝑡𝑗

2  (1) 

where 
Δ𝑡𝑘 = 𝑡𝑘 − 𝑡𝑘−1 
Δ𝑝𝑖,𝑘 = 𝑝𝑖,𝑘 − 𝑝𝑖,𝑘−1 

 



 

 

4.3  Single-Camera Matching Algorithm 
through Camera-To-Sensor Translation 
Our proposed approach for a single camera tries to build the 
translation between the camera and wearable accelerometer so 
that they can be compared in the same physical space with the 
same unit and physical meaning. We establish the camera-to-
sensor translation (CST), which is discussed later in this section, 
by finding the physical length of pixels in the image frame. 

4.3.1 Establish Translation for an Object Moving at Constant 
Depth Relative to a Camera. Equation 2 reveals a linear 
relationship between an object’s depth d and its actual size x under 
the observation of pixel length y in an image frame. However, d 
is an unknown variable. While one can recover a 3-dimensional 
model of an object using multiple cameras through complex vision 
algorithms, a single regular RGB camera alone without depth 
sensors is not capable of capturing depth information.  

To address the above issue, we develop a model to recover 
depth information of objects automatically by fusing data that 
comes from both camera and wearable accelerometer. This 
solution assumes that the direction of motion is parallel to the 
image plane of the camera; in other words, d is assumed to remain 
constant here. Later, we expand this solution to motions with 
limited depth variation as well. However, if d varies a lot during a 
movement, it will be impossible to retrieve depth information 
with a single regular camera. In such case, a depth camera or 
multiple cameras will be required.  

In our proposed solution, instead of trying to filter out gravity 
interference as a source of noise from the accelerometer, we 
leverage it as a bridge to bring the two modalities into the same 
physical domain. To ensure the camera and accelerometer 
measure the same physical movement with analogous physical 
meaning, the first step of translation is to add a similar induced 
gravity to the camera readings. For a camera set up as shown in 
Figure 4, with θ degrees between its x-axis and horizon, gravity in 
the camera’s coordinate system is divided into two parts gx and 
gy. Using the relationship shown in Equation 2, Equation 3 can 
then be used to quantify gravity interference gcam in the camera.  

𝑔𝑐𝑎𝑚 = [
𝑔𝑥

𝑔𝑦
] = [

‖𝑔𝑐𝑎𝑚‖ ∙ 𝑠𝑖𝑛 𝜃
‖𝑔𝑐𝑎𝑚‖ ∙ 𝑐𝑜𝑠 𝜃

] (3) 

where 

‖𝑔𝑐𝑎𝑚‖ =  
𝑌

2 𝑡𝑎𝑛
𝛼
2

∙ 𝑑
∙ ‖𝑔𝑝ℎ𝑦‖

𝑝𝑖𝑥𝑒𝑙/𝑠2

  

‖𝑔𝑝ℎ𝑦‖ is the acceleration due to  gravity  on earth, which is 
9.8 m/s2. To ensure the analogous physical meaning of these two 
modalities, we add gravity interference gcam to the camera-sensed 
acceleration 𝑎𝑖,𝑗

𝑐  at each timestamp tj. Since accelerometer-sensed 

acceleration (𝑎𝑖,𝑗
𝑚 ) already includes gravity, as shown in Equation 

4, we similarly calculate gravity-induced camera-sensed 
acceleration 𝑎𝑖,𝑡

𝑐  as in Equation 5 by incorporating gcam. 

𝑎𝑖,𝑗
𝑚 = 𝑔𝑝ℎ𝑦 − 𝑎𝑙𝑖𝑛𝑒𝑎𝑟  𝑚/𝑠2  (4) 

𝑎𝑖,𝑗
𝑐 = 𝑔𝑐𝑎𝑚 − 𝑎𝑖,𝑗

𝑐

 𝑝𝑖𝑥𝑒𝑙/𝑠2  (5) 

Even though Equation 5 offers analogous observations from 
the camera and accelerometer by adding the same gravity 
interference, to generate gravity-induced camera-sensed 
acceleration 𝑎𝑖,𝑗

𝑐 , the value of gcam needs to be known, and the 
units of the camera-sensed and accelerometer-sensed 
accelerations need to be the same; both of the requirements can 
be met only when the depth d is known. To acquire an estimated 
depth d, we model it as an optimization problem to find the 
optimal depth d that maximizes the similarity between readings 
from the camera and accelerometer. Based on Equation 2, the ratio 
between the actual size of the object and the size of its projection 
into the camera frame is a constant value at a certain depth. Thus, 
as long as the depth is constant, the ratio between the gravity 
measured by the camera and accelerometer is same as the ratio 
between the motion acceleration measured by these two 
modalities, as Equation 6 shows. 

‖𝑔𝑝ℎ𝑦‖

‖𝑔𝑐𝑎𝑚‖
=

‖𝑎𝑖,𝑗
𝑚 ‖

‖𝑎𝑖,𝑗
𝑐 ‖

. (6) 

From Equation 6, we derive Equation 7, where ω scales camera-
sensed motion acceleration from pixels to meters. We refer to ω 
as the outcome of CST, and it is a function of depth d. 

‖𝑎 𝑖,𝑗
𝑐 ‖ ∙ 𝜔(𝑑) = ‖𝑎𝑖,𝑗

𝑚 ‖ (7) 

where 

𝜔(𝑑) =
‖𝑔𝑝ℎ𝑦‖

‖𝑔𝑐𝑎𝑚‖
=

2 𝑡𝑎𝑛
𝛼
2

∙ 𝑑

𝑌
 

 

 
Figure 3. Pinhole Camera model 

 
Figure 4. A camera placed with θ degree between its x-axis 
and the horizon in the physical world 
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We then model our estimation as an optimization problem as 
follows: 

PROBLEM 1. Find the optimal CST. Let 𝑎𝑖,𝑗
𝑚  and 𝑎𝑖,𝑗

𝑐  be 
synchronized time sequences of accelerations from an 
accelerometer and a camera respectively, and 𝑎𝑖,𝑗

𝑐  be the gravity-
induced camera-sensed acceleration. The optimal CST, ω, is 
determined by minimizing the distance between ‖𝑎𝑖,𝑗

𝑐 ‖ ∙ 𝜔(𝑑) and 

‖𝑎𝑖,𝑗
𝑚 ‖. Using the L2 norm to measure the distance, an optimization 

problem is formulated as shown in Equation 8: 

𝑑 = 𝑎𝑟𝑔𝑚𝑖𝑛 ℎ(𝑑) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑑

∑(‖ 𝑎𝑖,𝑗
𝑐 ‖ ∙ (𝑑)

𝑛

𝑗=1

− ‖𝑎𝑖,𝑗
𝑚 ‖)2 

(8) 

where 

‖ 𝑎𝑖,𝑗
𝑐 ‖ = ‖𝑎𝑖,𝑗

𝑚 ‖ =  (𝑎𝑥,𝑖,𝑗
𝑚 2

+ 𝑎𝑦,𝑖,𝑗
𝑚 2

+ 𝑎𝑧,𝑖,𝑗
𝑚 2

)
1
2 

‖𝑔𝑐𝑎𝑚‖ =
9.8

(𝑑)
 

 

By solving the optimization problem in Equation 8 for d, we 
can estimate the depth of the object with a single camera and the 
accelerometer data. However, since ∥gcam∥ =  9.8 (𝑑)⁄ , we can 
replace 𝜔(𝑑) with 9.8    ∥ 𝑔𝑐𝑎𝑚 ∥ ⁄  and treat ∥gcam∥ as the only 
unknown.  This allows us to avoid specifying parameter α to our 
algorithm if the depth (i.e., the value of variable d) is not important 
for the target application. α is a constant parameter of the camera 
and is required for calculating d from 𝜔(𝑑) based on Equation 7. 
Equation 8 specifies a least-sum-of-squares optimization, which is 
solvable by the Gauss-Newton or gradient descent methods [21]. 

4.3.2 Matching Criteria. After finding the optimal CST (i.e., ω or 
∥gcam∥), which minimizes the function h(d) in Equation 8, we 
calculate the distance between readings from the camera, after 
translations by applying (𝑑), and the accelerometer. The 
resulting distance (i.e., min ℎ(𝑑) is the translated distance 
between these two sequences and allows us to design a criteria to 
determine whether the two sequences are matched (i.e., coming 
from the same motion). 

Setting a constant threshold on translated distance is the 
simplest method since a smaller translated distance always 
implies a higher similarity between two sequences. However, 
finding a constant threshold that covers most cases and rarely 
leads to misdetection is challenging. In our experiments, the 
translated distance between two sequences is greatly affected by 
the type of movements; fast movements always lead to larger 
translated distances than slow movements because of larger noise. 
Therefore, fast movements may need a larger threshold compared 
to slow movements. As a result, it is challenging to determine a 
constant threshold for all possible movements. To address this 
problem, we design an adaptive threshold. We formulate our 
criteria as follows: 

{
𝜆 < 𝜌  →  𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠   

𝜆 ≥ 𝜌   →  𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠
  

where 

𝜆 =
𝑚𝑖𝑛(ℎ(‖𝑔𝑐𝑎𝑚‖))

𝜇
 (9) 

𝜇 = lim
‖𝑔𝑐𝑎𝑚 ‖→∞

𝑓(‖𝑔𝑐𝑎𝑚‖) =  ∑ (9.8 − ‖𝑎𝑖,𝑗
𝑚 ‖ )

2

𝑡2

𝑡=𝑡1

 
(10) 

where 𝜌 ≤ 1 is a constant value specified by the user and serves 
as a threshold, but 𝜆 is calculated based on the accelerometer data. 
The proposed criteria adjusts itself according to the acceleration 
of movements as it takes advantage of readings from the 
accelerometer to adjust the value of 𝜇. Fast movements lead to 
larger values of 𝜇 that alleviates effect of large ℎ(‖𝑔𝑐𝑎𝑚‖). Details 
of driving this adaptive threshold is shown in Appendix 7.1. 

4.3.3 Establish Translation for Objects Moving at Limited 
Varying Depth Relative to the Camera. Dealing with the depth 
changing scenarios by using a single camera, perspective 
projection distortion and loss of depth changing information are 
two major challenges [22]. The camera loses depth changing 
information during the projection process. Loss of depth changing 
information occurs when objects are projected from a three-
dimensional space to a two-dimensional image. In this section, we 
assume that objects experience limited depth-varying movements. 
The limitation is that the direction of the movement should be 
preserved. Under this assumption, we can add gravity interference 
in a fixed direction as we did in the constant depth scenario. The 
camera only observes movements projected onto the image plane, 
while the accelerometer measures movements in all three 
directions. To compare only the parts of movements that are 
sensed by both modalities, we use Equation 11 as a filter to remove 
unnecessary information from the original accelerometer’s 
readings 𝑎𝑖,𝑗

𝑚, and obtain filtered acceleration �̂�𝑖,𝑗
𝑚. In Equation 11, 

v=[x,y,z]T is a constant unit vector in the accelerometer’s frame 
with the same direction as the acceleration not observed by the 
camera (camera cannot observe depth changing) and 𝛿(𝑣) is a 
value between 0 and 1 and acts as the filter. 

𝑎 𝑖,𝑗
𝑚 = 𝑎𝑖,𝑗

𝑚 ∙ 𝛿(𝑣) 

𝛿(𝑣) = √1 − (
(𝑎𝑡

𝑚)𝑇 . 𝑣

‖𝑎𝑡𝑖,𝑗
𝑚 ‖

)

2

 
(11) 

Using the filtered acceleration, we extend Equation 8 to 
Equation 12 to adopt depth-varying scenarios. 

𝑑, 𝑣 = 𝑎𝑟𝑔𝑚𝑖𝑛 ℎ(𝑑, 𝑣)

= 𝑎𝑟𝑔𝑚𝑖𝑛
𝑑,𝑣

 ∑(‖ 𝑎 𝑖,𝑗
𝑐 ‖ ∙ (𝑑) − ‖𝑎𝑖,𝑗

𝑚 ‖

𝑛

𝑗=1

∙ 𝛿(𝑣))2 

(12) 

Equation 12 has a clear physical meaning where we measure 
the similarity between these two modalities in the same space 
after the optimal CST (i.e., ω) translates pixels into meters and the 
filter 𝛿 removes the unobservable part of accelerations from 
accelerometers. To solve Equation 12 and to find the best ω and δ, 
we follow a similar process as discussed in the constant depth 
scenario. We reuse the decision criteria discussed in the previous 
section as well. To completely address the challenges associated 
with varying depth movements and in order to expand this work 
to arbitrary motions, we adopt a multiple camera scenario and 
discuss the corresponding methodology in the next subsection. 



 

 

4.4 Multiple Cameras Matching through Depth 
Information Recovery.  

With a single camera, depth information is naturally lost and is 
challenging to restore. Thus, in the previous section with a single 
camera, we first investigated the constant depth paradigm, which 
allows us to estimate the depth using a distance minimization 
approach, and then we limited the varying depth movements by 
considering motions in which the direction is not changed to 
avoid intolerable distortion. This limitation however can be 
released by utilizing multiple cameras. In this section, we discuss 
a general solution to the problem of detecting matching between 
accelerometer and camera measurements leveraging two cameras. 
In contrast to the single camera paradigm, with the multiple 
camera paradigm the depth can be determined, using Equation 1, 
acceleration can be directly calculated from the camera readings, 
and then it can be compared to the accelerometer readings. 

In the two-camera scenario, each pixel in a camera frame 
corresponds to a camera ray. By using two or more cameras, the 
3-D location of the object can be determined by leveraging the 
unique intersection point of multiple camera rays, and thus the 
depth is recovered [23]. We can thus use this information to 
restore the depth. We continue to use the pinhole camera model 
to analyze the properties of the cameras. 

We select one of these cameras and use its frame as the global 
frame called G. A vector 𝜐 observed in other camera’s ith frame Fi 
can be transformed into 𝜐′  in G using Equation 13. 

𝜐′ = 𝑅𝜐 + 𝑇 (13) 

R in Equation 13 is the rotation matrix, and T= [x, y, z]T is the 
translation matrix, which translates the origin o of the frame Fi to 
o’ = (x, y, z) in the global frame G. Using Euler angles ψ (roll), θ 
(pitch), and φ (roll) to denote its relative orientation towards 
global frame G, the final status of the frame is obtained. The value 
of rotation matrix R relative to G is shown in Appendix 7.2. 

To model the camera ray corresponding to pixel p=(x, y, f), 
where f is the focal length, we use Equation 14 to describe it in the 
global frame G. 𝑜′ in Equation 14 is the origin of the ray in global 
frame G, and 𝜏 is the parameter of the function. 

𝑟(𝜏) = 𝑜 ′ + 𝜏(𝑹𝑝 + 𝑇) (14) 

Ideally, if we have two camera rays capturing the same object 
via different lenses, they should intersect, and the point of 
intersection is the physical location of the object in the global 
frame (Figure 5). However, noise from the object tracking 
algorithm may inhibit the detection of the point of intersection. 
To obtain a reasonable estimation, we find a pair of points on the 
rays that have the shortest distance among all pairs of points and 
use the midpoint of the line between these two points as an 
estimation of the intersection or location of the object. Thus, we 
can estimate the depth of the object. To find a pair of points 
between the camera ray r1(𝜏1) = o1 + 𝑢𝜏1 and camera ray r2(𝜏2) = o2 
+ 𝜐𝜏2, we denote vector e = r1(𝜏1) – r2(𝜏2) = o1 - o2 + 𝜏1𝑢- 𝜏2𝜐 as the 
vector from a pair of points on two rays as illustrated in Figure 5. 

The length of the vector e should have its minimum value at a 
unique pair of points p1 and p2 if the camera rays r1 and r2 are not 

r1

r2

o1

o2

u

v

e

r1(t1)

r2(t2)

 
Figure 5. The pair of points that have shortest distance 

parallel. Specifically, the distance between p1 and p2 will reach its 
minimum value when vector e is simultaneously perpendicular to 
both r1 and r2, and this property will lead to Equation 15. 

𝑢 ∙ 𝑒 = 0 
𝜐 ∙ 𝑒 = 0 

(15) 

We can solve two equations with two unknowns, which are 𝜏1 
and 𝜏2. The answer is represented in Equation 16 where 𝛼 = 𝑢 ∙ 𝑢, 
𝛽 = 𝑢 ∙ 𝜐, 𝜁 = 𝜐 ∙ 𝜐, 𝜉 = 𝑢 ∙ (o1 - o2), and 𝜀 = 𝜐 ∙ (o1 - o2) respectively. 

𝜏1 =
𝛽𝜀 − 𝜁𝜉

𝛼𝜁 − 𝛽2 

𝜏2 =
𝛼𝜀 − 𝜁𝜉

𝛼𝜁 − 𝛽2 

(16) 

We use these points to retrieve depth to calculate accelerations 
observed by the camera using Equation 1, and compare it to the 
accelerations sensed by the wearable accelerometer. 

5 EXPERIMENTAL RESULTS 

To our knowledge, this is the first work that attempts to match 
arbitrary movements observed between an accelerometer and 
cameras without using information about type of the movement 
or sensor placement. Hence, it is challenging to present a 
comparison to the state-of-the-art. In our experimental validation, 
we focus on determining the ability to find the matched sequences 
that stem from the same movements. We utilize Sony PS Eye 
cameras, with resolution of 640 ×480, and a frame rate of 30Hz. 
For the wearable accelerometers, we use a custom-designed 
wearable device developed by our research laboratory operating 
with a sampling rate of 60Hz [24]. It should be noted that any type 
of accelerometer embedded in commercial smartwatches or 
smartphones can work with our proposed algorithms. 

5.1 Single-Camera Performance 
We demonstrate the effectiveness of our proposed techniques in 
the context of the following experiment. One person is holding an 
accelerometer in his hand, and performs a movement or a gesture.  
Four other participants also perform gestures at the same time all 
captured by the same camera but they do not hold an 
accelerometer. This creates a paradigm where the camera sees 
multiple moving objects while just one of them is being measured 
by the accelerometer at the same time. The movement of four 
participants without an accelerometer does not necessarily need 
to be the same as the person with the accelerometer. We attempt 
to identify the movements associated with the person who is 
holding the accelerometer. This will demonstrate a simple 
application that can identify users in a space who provide their 
accelerometer streams, and when a match is determined, this 
would be used to provide certain services for the user. 



 

 

Table 1.  Transformed distance between cameras and accelerometers for six sets of experiments at constant depth 

Dist. 
No.1 Walking No.2 Circling Clockwise No.3 Circling Counterclockwise 

A1 A2 A3 A4 A5 A1 A2 A3 A4 A5 A1 A2 A3 A4 A5 
C1 0.84 35.01 39.13 19.60 13.19 7.47 46.80 82.39 72.25 88.98 8.23 43.79 105.66 95.45 88.63 
C2 32.88 1.26 9.54 19.44 22.42 41.64 4.98 82.46 66.70 72.62 40.65 6.78 105.88 95.33 88.49 
C3 33.90 13.99 1.31 19.06 22.43 73.48 77.06 12.32 72.50 90.64 58.16 61.60 9.18 95.73 88.61 
C4 34.03 45.21 39.91 0.67 22.33 70.83 70.02 79.45 8.34 89.85 58.12 61.04 105.85 13.74 88.59 
C5 12.91 45.08 40.10 19.66 0.74 72.29 62.04 82.57 75.22 5.42 58.54 61.62 105.93 95.82 20.01 

 No.4 Sliding Vertically No.5 Waving Hands No.6 Moving Randomly 
C1 14.44 144.80 212.16 200.10 148.18 17.68 176.55 90.93 117.77 122.96 1.46 28.01 25.50 41.14 30.75 
C2 144.22 15.58 213.02 185.35 148.72 130.80 13.79 120.57 117.84 127.94 11.89 3.12 25.55 36.76 30.77 
C3 145.29 153.76 32.61 200.63 131.20 113.37 176.44 12.16 117.97 127.63 12.01 28.21 2.12 42.95 15.30 
C4 146.33 145.31 213.01 52.15 148.38 129.68 176.40 120.45 19.32 127.35 11.33 23.52 25.77 7.06 30.72 
C5 139.22 153.75 160.88 200.13 72.50 130.30 176.66 120.25 117.35 21.81 11.99 28.21 12.85 42.72 3.48 

 
Figure 6. Two sequences of accelerometer data from 

experiment No.4 corresponding to two different subjects 

 

 
Figure 7. Data from accelerometers and cameras before and 
after CST was applied 

To test the performance of our method, we conduct different 
sets of experiments while within each set, there are five 
participants performing a gesture/activity. Each set of 
experiments is repeated five times and in each repetition, one of 
the subjects holds an accelerometer while others do not hold any. 
Since it is challenging for a camera-based object tracking 
algorithm to track five moving participants at the same time with 
reasonable accuracy, we record each movement five times 
separately and manually bind them together into one experiment 

as in [4]. We capture each movement with 200 frames, which is 
6.67 seconds since the cameras operate at 30 frames per second. 

5.1.1 Constant Depth Scenario. We conduct six sets of 
experiments to evaluate the accuracy of the proposed system 
under constant depth motions. The six movements tested are 
walking, waving hands, circling the hand clockwise, circling the 
hand counterclockwise, sliding the hand vertically, and moving 
the hand randomly. The results of the six sets of experiments are 
shown in Table 1, where Ci in the table represents the moving 
object i tracked by the LK algorithm in the camera view, and Ai 
denotes the accelerometer that is being held by the subject i. 
Column ith in the table shows a separate repetition of the 
experiment while ith subject is holding the accelerometer and 
others do not. The distance between the acceleration calculated 
from the camera data for 5 tracked objects (C1-5) and the 
acceleration measured by the accelerometer on subject i is shown 
in ith column. Therefore, the element with the smallest value at 
each column corresponds to determining a match between the 
accelerometer and the corresponding object detected in the 
camera view. It is evident from Table 1 that the minimum 
transformed distances between these two modalities appear at the 
diagonal of the table, which indicates all correct matchings are 
determined by our proposed algorithm. Figure 6 offers a clear 
illustration on the similarity of the gestures performed by 
different participants in our experiment. Those two sequences of 
readings from accelerometer from two participants in the figure 
show a high similarity in both magnitude and pattern. However, 
our technique is still capable of matching the objects associated 
with an accelerometer in the camera frames correctly, and 
rejecting irrelevant sequence, after the proposed translation. 

Figure 7 also shows how CST brings data from these two 
modalities into the same space. The figure demonstrates that prior 
to applying the CST method to the camera data, the two sequences 
of readings from the camera and the accelerometer do not offer 
similarities. Their patterns are different due to the impact of 
gravity on the accelerometer, and their magnitudes are dissimilar 
due to their representation with different physical units. 
However, the optimal CST successfully translates the readings 
from the camera space to the accelerometer physical space, where 
both modalities share the same pattern and physical units. 

We derive additional observations from Table 1. First, when 
looking column-wise, the translated distance between unmatched 
pairs is similar in most cases, which validates our explanation in 
section 4.3.2 that the translated distance between unmatched pairs 



 

 

is almost the same.  Second, it is impossible to distinguish 
matched/unmatched pairs by utilizing a constant threshold. For 
example, the translated distance between unmatched Ci (i = 2, 3, 
4, 5) and A1 in experiment No. 6 is around 12, which is even 
smaller than the distance between A5 and C5 in experiment No. 4, 
which is 72.50, while they are matched. This indicates that the 
absolute value of translated distance of matched pairs is not 
necessarily always smaller than unmatched pairs. A more detailed 
comparison between our criteria and the constant threshold is 
offered in the next subsection. 

5.1.2 Effect of Proposed Criteria. To further demonstrate that it 
is necessary to develop an alternative approach to the constant 
threshold selection and that our proposed criteria provides 
suitable separation for matched and unmatched sequences, we 
gather distance values in Table 1 and plot them in Figure 8. We 
calculate both translated distance and λ in Equation 9, and 
scattered results into two plots. The figure on the left indicates 
that by using only a constant threshold on the translated distance, 
it is impossible to separate matched and unmatched pairs apart, 
since it is clear that the red points (matched pairs) and black points 
(unmatched pairs) are not linearly separable. This further 
supports our hypothesis that the translated distance between two 
data sequences cannot distinguish matched and unmatched pairs 
apart since the translated distance is significantly affected by how 
fast the object is moving. The plot on the right indicates that our 
proposed method is able to transform all data points into a linear-
separable space using Equation 9, and a visible difference between 
matched and unmatched pairs is observed. 

5.1.3 Convergence Time. In our experiments the convergence 
time refers to the number of frames or samples needed for our 
algorithm to offer a correct decision in determining matched 
sequences. We calculate the number of frames needed to allow 
Equation 8 to converge. The experimental results regarding the 
convergence time for each object i are shown in Table 2, which 
indicates that on average 1.5s is sufficient for our algorithm to 
determine a match. That is, about 45 frames would be sufficient, 
since our cameras operate with a frame rate of 30 per second. Oi 
in the table corresponds to the convergence time in seconds for 
detecting the matched pair Ai and Ci in each experiment listed in 
Table 1. It should be noted that convergence time is largely 
affected by the quality of data; too much noise may cause longer 
convergence time and even result in a mismatch. The data in Table 
2 is calculated based on our experimental setup and environment. 

5.1.4 Single-Camera Depth Varying Performance. In one set of 
experiments, the participants were asked to perform hand 
gestures to test the performance of our technique under limited 
depth-varying conditions using a single camera.  In this 
experiment, the participants were allowed to move their hand 
forward and backward but keeping the direction fixed. This leads 
to limited changing of the relative depth of the hand with respect 
to the camera. The analysis for the depth varying experiments are  
similar to the constant depth scenario since both scenarios share 
the similar concept and methodology. 

Figure 9 demonstrates the impact of our proposed filter as 
shown in Equation 12 to eliminate the unobservable  acceleration  

Table 2. Convergence time in experiments 
Convergence 

Time (s) 
O1 O2 O3 O4 O5 

Experiment No.1 0.767 0.533 0.833 0.967 0.667 
Experiment No.2 0.800 0.867 0.600 0.567 0.333 
Experiment No.3 0.633 0.500 0.800 1.033 0.700 
Experiment No.4 0.500 0.833 1.200 1.433 1.400 
Experiment No.5 0.700 0.367 1.100 1.367 0.533 
Experiment No.6 0.967 3.200 0.600 0.867 1.267 

 
Figure 8. Comparison between naive criteria and proposed 
criteria to detect matched and unmatched sequences 

 

   
Figure 9. Match in depth varying scenario with one camera 

from the camera, which assists our algorithms to establish a 
stronger relationship between the camera and the wearable 
accelerometer readings. In presence of the same experimental 
settings as in the constant depth scenario, Table 3 shows the 
translated distance calculated in our experiments with five 
wearable accelerometers moved by the participants. As 
demonstrated in Table 3, for all five participants, our algorithm 
was able to identify and match the participant with an 
accelerometer to the correct corresponding object detected by the 
camera under the assumption that the direction of the motions 
remains constant while the depth is changing. However, our 
method may fail in significant depth changes that include changes 
in the direction of the motions. Thus, in case of using a single 
camera for varying-depth scenarios the direction of the movement  



 

 

Table 3. Translated distance when depth varies with one 
camera 

Distance A1 A2 A3 A4 A5 
C1 3.00 6.08 16.52 10.80 36.51 
C2 9.40 2.17 17.54 10.39 38.03 
C3 8.55 6.16 9.10 10.41 29.86 
C4 9.28 6.02 17.33 3.11 37.88 
C5 9.22 6.22 13.22 10.46 6.94 

Table 4. Translated distance using multiple cameras 

Distance 
Experiment No. 1 

A1 A2 A3 A4 A5 

C1 4.12 62.57 70.93 92.46 59.86 
C2 65.11 3.39 79.38 85.23 64.08 
C3 67.31 72.55 4.88 38.46 73.08 
C4 85.05 71.35 29.67 6.09 94.65 
C5 65.35 65.93 78.67 104.87 3.66 

Distance Experiment No. 2 

C1 6.25 86.94 52.56 69.49 56.33 
C2 83.66 6.61 48.10 47.26 42.59 
C3 70.28 65.35 2.03 15.61 7.77 
C4 81.48 59.43 10.88 3.67 7.63 
C5 76.30 60.49 10.56 12.42 0.92 

should be retained so that our method can add gravity 
interference to camera-sensed accelerations in a correct direction. 

5.2 Multi-camera Performance 
We use two cameras in our experiments to assess the performance 
of the proposed solution. We arbitrarily select one camera as the 
global frame. The relative angle of the other camera to the global 
frame is 60 degree around z-axis and the distance between the 
centers of the two cameras is 1.2 meters. Two sets of experiments 
are conducted to evaluate accuracy of multiple camera solution. 
Within each set, the subjects are asked to perform arbitrary hand 
gestures. Distance between different moving objects in each 
experiment is shown in Table 4 where all minimal distances 
appear at the diagonal of the table, which indicates that all the 
matched pairs were successfully determined by our method.  

6 CONCLUSION 
We proposed a method to tag the movement of an accelerometer 
in frames acquired by camera(s). The main contribution of our 
approach lies in the fact that the tagging does not require the 
knowledge of the orientation of the accelerometer or type of the 
movement. Our proposed approach retains the ability to match 
arbitrary movements in case of constant depth and with minimal 
constraints in case of varying depth using a single camera. We 
also offered a solution based on multiple cameras that works for 
any kind of motion without any limitations. We validated the 
performance of our proposed techniques and demonstrated their 
effectiveness in tagging an accelerometer in the view of a camera 
in no depth and minor depth changes. We also showed that this 
solution could be scaled to multiple cameras when more advanced 
tagging is required. Our proposed methodology will enable 
various applications that can benefit from tagging an 
accelerometer in the view of the camera, such as user 
identification or asset tracking. 
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7 Appendices 
7.1 Matching Criteria Formulation 
Our proposed decision criteria is based on the fact that function h 
(Equation 8) will have a global minimum value when 𝑎𝑖

𝑐 and 𝑎𝑖
𝑚 

are matched, while it tends to decrease smoothly when 𝑎𝑖
𝑐 and 𝑎𝑖

𝑚 

are not matched or are not coming from the same motion. 
Treating ‖𝑔𝑐𝑎𝑚‖ as a whole to simplify our analysis, the function 
h can be written as Equation 17. 

ℎ(‖𝑔𝑐𝑎𝑚‖) =  ∑(‖ 𝑎 𝑖,𝑗
𝑐 ‖ ∙

‖𝑔𝑝ℎ𝑦‖

‖𝑔𝑐𝑎𝑚‖
− ‖𝑎𝑖,𝑗

𝑚 ‖)2

𝑛

𝑗=1

 

=  ∑(𝛾𝑗(‖𝑔𝑐𝑎𝑚‖) − ‖𝑎𝑖,𝑗
𝑚 ‖)2

𝑛

𝑗=1

 

(17) 

The function 𝛾𝑗(‖𝑔𝑐𝑎𝑚‖) can be considered as the translation 

function to translate the camera’s data ‖ 𝑎𝑖,𝑗
𝑐 ‖ to m/s2 by applying 

different values of CST calculated from corresponding ‖𝑔𝑐𝑎𝑚‖. 
The derivative of function h in Equation 17 with respect to ‖𝑔𝑐𝑎𝑚‖  
is as shown in Equation 18: 

ℎ′ (‖𝑔𝑐𝑎𝑚
‖) = 2 ∑(𝛾𝑗(‖𝑔𝑐𝑎𝑚

‖) − ‖𝑎𝑖 ,𝑗
𝑚 ‖) ∙

𝑛

𝑗=1

𝛾𝑗′(‖𝑔𝑐𝑎𝑚
‖) (18) 

A heuristic explanation for the property of ℎ′ is as follows: for 
two matched sequences, there should exist an optimal CST, ω, to 
translate the two modalities so that the two sequences become 
most similar. This optimal value of ω leads to the value of 
∑ (𝛾𝑗(‖𝑔𝑐𝑎𝑚‖) − ‖𝑎𝑖,𝑗

𝑚 ‖)𝑛
𝑗=1  in Equation 18 approaching zero, 

turning ℎ′(‖𝑔𝑐𝑎𝑚‖) to zero, and function h reaching its global 
minimum value. For two unmatched sequences, however, it is 
unlikely to obtain such a CST, and thus ℎ′(‖𝑔𝑐𝑎𝑚‖) approaches 
zero as ‖𝑔𝑐𝑎𝑚‖ → ∞ since 𝑙𝑖𝑚‖𝑔𝑐𝑎𝑚‖→∞ 𝛾𝑗′(‖𝑔𝑐𝑎𝑚‖) = 0. 

Therefore, the typical shape of function h in Equation 17 for both 
matched and unmatched pairs of sequences would be same as 
Figure 10, which is consistent with our experimental validation. 

Using this property, we formulate our criteria as follows:  

{
𝜆 < 𝜌  →  𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠   

𝜆 ≥ 𝜌   →  𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠
  

Where 

𝜆 =
𝑚𝑖𝑛(ℎ(‖𝑔𝑐𝑎𝑚‖))

𝜇
 

𝜇 = lim
‖𝑔𝑐𝑎𝑚 ‖→∞

𝑓(‖𝑔𝑐𝑎𝑚‖) =  ∑ (9.8 − ‖𝑎𝑖,𝑗
𝑚 ‖ )

2

𝑡2

𝑡=𝑡1

 

where 𝜌 ≤ 1 is a constant value specified by the user and serves 
as a threshold, but 𝜆 is calculated based on the camera and 
accelerometer data. The proposed criteria adjusts itself according 
to the acceleration of movements because it takes advantage of 
readings from the accelerometer to adjust the value of 𝜇. Fast 
movements lead to a larger value of 𝜇. The reason is that 𝑎𝑖,𝑗

𝑚  
consists of both gravity and linear acceleration, so if the object is 
not moving, 𝑎𝑖,𝑗

𝑚  will be equal to gravity and the term 9.8 − 𝑎𝑖,𝑗
𝑚  

will be zero. However, if the object experiences high acceleration,  
𝑎𝑖,𝑗

𝑚  will be different from 9.8 and 𝜇 will be larger, thus the value 
of 𝑚𝑖𝑛 ℎ(‖𝑔𝑐𝑎𝑚‖) will be allowed to be larger to satisfy Equation 
11. 

 
Figure 10. Different shapes of function h when the pair of 
data is matched or unmatched 

 

7.2 Rotation Matrix 
The value of rotation matrix R relative to the global frame in 

Equation 13 and Equation 14 is calculate by Equation 19. 

𝑹 = 𝑹𝒛(𝜓)𝑹𝒚(𝜃)𝑹𝒙(𝜑) 

where 

𝑹𝒛(𝜓) = [
𝑐𝑜𝑠𝜓 −𝑠𝑖𝑛𝜓 0
𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓 0

0 0 1
] 

𝑹𝒚(𝜃) = [
𝑐𝑜𝑠𝜃 0  𝑠𝑖𝑛𝜃

0 1 0
−𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃

] 

𝑹𝒙 (𝜑) = [

1 0 0
0 𝑐𝑜𝑠𝜑 −𝑠𝑖𝑛𝜑
0 𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑

] 

 

(19) 

where ψ (roll), θ (pitch), and φ (roll)  are Euler angles. 
 
7.3 System Demonstration 
The following link contains a video that demonstrates the 
operation of our proposed algorithm: http://tiny.cc/n7dvky. There 
are four participants in the video waving their hands. Figure 11 
shows a screen shots of this video. The participant on the right is 
holding an accelerometer. The accelerometer is tracked 
successfully and is marked with green dots while all other 
movements are marked by red dots. 

 
Figure 11. Screen shots of the video showing how the 
proposed algorithm tags the person carrying an 
accelerometer in the camera scene 

http://tiny.cc/n7dvky

