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ABSTRACT

Rust is a promising systems programming language that embraces
both high-level memory safety and low-level resource manipulation.
However, the dark side of Rust, unsafe Rust, leaves a large security
hole as it bypasses the Rust type system in order to support low-
level operations. Recently, several real-world memory corruption
vulnerabilities have been discovered in Rust’s standard libraries.

We present XRust, a new technique that mitigates the security
threat of unsafe Rust by ensuring the integrity of data flow from
unsafe Rust code to safe Rust code. The cornerstone of XRust is
a novel heap allocator that isolates the memory of unsafe Rust
from that accessed only in safe Rust, and prevents any cross-region
memory corruption. Our design of XRust supports both single-
and multi-threaded Rust programs. Our extensive experiments on
real-world Rust applications and standard libraries show that XRust
is both highly efficient and effective in practice.

1 INTRODUCTION

Long-existing system programming languages such as C/C++ offer
programmers the ability to manipulate low-level resources but
in error-prone ways. Countless severe bugs have been found due
to the unsafe nature of these languages [8, 17, 32]. Rust [23] is a
rising language that tries to bridge the gap between memory safety
and low-level system programming. With new language features
such as ownership, borrowing, and lifetime, Rust guarantees a
program to be memory safe if it could be compiled (at the absence
of unsafe Rust). The type system of Rust and its encapsulation on
low-level operations have been formally proved to ensure memory
safety [22, 33].

However, the static restrictions of Rust can be too strict to admit
many valid programs due to reasons including (1) by nature, static
analysis is conservative and (2) the underlying computer hardware
is inherently unsafe and certain operations could not be done with
safe Rust [10]. This problem is addressed by unsafe Rust, which
escapes from the static checks [36]. With unsafe Rust, program-
mers are able to manipulate raw pointers, perform unprotected
type casting and other dangerous operations just like in C/C++.
Therefore, a Rust program is free of memory errors only when its
unsafe code is correctly implemented and does not violate mem-
ory safety properties [22]. However, requiring all the unsafe Rust
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Table 1: Unsafe Rust code in practice (Rust-lang contains the
code for Rust compiler and all the Rust standard libraries).

LoC [ LoC (unsafe) [ unsafe %

2,480,761 18,490 0.75%
327,792 3,163 0.96%

collected crates
Rust-lang

code to be correctly implemented is difficult. Bugs in unsafe Rust
code may result in severe vulnerabilities, as witnessed by several
memory errors discovered recently [5, 37, 38]. What is worse is that
a memory error in unsafe Rust may corrupt arbitrary data in the
whole address space, i.e., bugs in unsafe Rust can be exploited to
hijack function pointers or steal sensitive data in safe Rust.

To understand how the unsafe portion of Rust is used in real-
world applications, we randomly selected 500 crates from crates.io
and counted the number of lines of unsafe code (shown in Table 1).
The result indicates that most real-world Rust programs only rely
on a very small fraction of unsafe code (< 1%) on average. Although
in practice most memory objects in Rust are statically protected
by Rust’s type system, a bug residing in unsafe Rust code could
simply ruin the entire effort and put the whole program at the risk
of being attacked!

In this paper, we present XRust, a novel approach to mitigate
the security threat brought by unsafe Rust while imposing min-
imal overhead to Rust programs. While there exist several prior
attempts [7, 21, 28-30] on C/C++ to retrofit full memory safety of
the language (which is often expensive), our goal is not to bring
memory safety to unsafe Rust, but to ensure the integrity of data
in safe Rust (at the presence of memory errors in unsafe Rust code).
In XRust, the heap is logically divided into two mutually exclusive
regions: an unsafe region and a safe region. Memory objects created
and/or accessed by unsafe Rust (referred to as unsafe objects) are
placed in the unsafe region and can be corrupted. All other safe
objects are stored in the safe region and can never be corrupted.
The separation between safe and unsafe objects can be enforced
by in-process memory isolation techniques [9, 48]. In this work,
we explore two methods using instrumentation and memory guard
pages to achieve in-process isolation.

As depicted in Figure 1, XRust works as follows:

(1) In the original code, the two objects buf and password are
treated equally and are placed in the same heap region. A
heap-based attack exploiting a memory corruption of buf
in unsafe Rust code can cause arbitrary write to the whole
address space, including corrupting password,;

(2) In the XRust-protected code, buf is placed in the unsafe
region separated from password, because buf is used in
unsafe Rust. When using instrumentation, runtime checks
are inserted to prevent cross-region data flows from the
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Figure 1: A technical overview of XRust (using instrumentation-based memory isolation).

unsafe region to the safe region. When using guard pages,
isolation is enforced by placing inaccessible memory pages
between the two regions.

We note that XRust does not attempt to guarantee full memory
safety of unsafe Rust, but the safety of memory objects in safe Rust.
The main goal of XRust is to provide effective protection while
imposing negligible overhead. Also, XRust only targets memory
corruption on heap objects. Stack protection techniques such as
stack canaries [14] and SafeStack [24] have been deployed widely
in real systems. Proposals [20, 35] to support SafeStack in Rust have
also been implemented.

To our knowledge, XRust is the first attempt to isolate the side
effect of unsafe Rust automatically and it achieves both effectiveness
and efficiency by leveraging unique language features of Rust. The
design of a new type of multi-region heap allocator is seamlessly
incorporated into the Rust framework while achieving backwards
compatibility. To support a separate memory region in XRust is
also challenging and we made extensive modifications in the Rust
compiler ranging from high-level language features to the low-
level heap allocator. In summary, we highlight our contributions as
follows:

o XRust is the first approach to automatically protect safe Rust
from memory corruption errors in unsafe Rust. A recent
work, Fidelius Charm [2], shares a similar goal but it re-
quires programmers to mark and restore unsafe data before
and after unsafe code blocks at memory page level. More
importantly, FC is limited usability when handling shared
unsafe objects in safe Rust code as discussed in Section 5.1.1.
We design and implement a novel heap allocator that sup-
ports safe and unsafe memory regions, and efficiently checks

cross-region references using instrumentation or guard pages.

We evaluate XRust extensively on real-world Rust applica-
tions and memory errors. Our result shows that XRust incurs
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0.15% median overhead on tested crates (2.8% on Rust stan-
dard libraries) and it effectively defends against attacks that
exploit known real-world memory vulnerabilities in Rust.

2 OVERVIEW

In this section, we first discuss the rationale behind the design
of XRust. We then illustrate how XRust works on a motivating
example based on a real vulnerability in Rust.

2.1 Why XRust?

The clear separation between safe and unsafe Rust naturally di-
vides objects into two mutually exclusive sets: The sets of safe and
unsafe objects, based on whether they are used in unsafe Rust. At
a high-level view, since only unsafe objects are under the risk of
being corrupted in Rust programs, the isolation enabled by XRust
between memory regions used by safe and unsafe objects ensures
that potential memory corruptions can only impact the unsafe
region and can never cross the boundary to corrupt safe objects.

In this subsection, we first discuss how unsafe Rust is used in
practice, and then discuss the protection strength of XRust with
respect to both spatial and temporal memory safety.

2.1.1 Unsafe Rust in practice. We studied several popular open-
source Rust projects as well as the Rust standard library to under-
stand the usage of unsafe Rust in the real world.

As summarized in Table 1, Rust programs only contain less than
1% unsafe code on average, and unsafe Rust is typically used only
for low-level operations and optimizations. The statistics provide
strong evidence that most objects are only processed by safe Rust
and by isolating the side-effect of unsafe Rust, XRust is able to
protect all of them. Apart from this, we also conducted in-depth
inspections of the source code on the usage of unsafe Rust (related to
memory safety). We summarize our findings into three categories:



Unbounded Memory Accesses. Instead of using object refer-
ences, programmers sometimes use raw pointers and unchecked
pointer arithmetic to access a piece of consecutive memory. E.g.,
in base64, instead of using a vector, the developers access the
encoding buffer directly through a raw pointer and iterate over
the memory by adding offsets to the pointer. This pattern is nor-
mally used to access an internal buffer and to skip default bound
checkings (in image, base64, vec, etc)

Unchecked Conversions. This includes both type conversion
as well as data format conversion (e.g., utf-8 to utf-16). This is
mainly used for developing low-level functionalities such as decod-
ing/encoding binary data and serialization as in string, byteorder,
bytes, etc.

Internal States Override. When using well-encapsulated safe
APIs from Rust libraries, the internal states of an object is normally
maintained internally by Rust (e.g., , pushing an element into a
vector increases the size of the vector). However, when developers
access an object in unexpected ways, the internal states need to
be manually adjusted. E.g., after initializing the buffer of a vector
using raw pointers, the size of the vector needs to be overridden
accordingly. The operation is unsafe as programmers are responsi-
ble to provide the correct value and unmatched internal states may
lead to undefined behaviors. This is typically used for the purpose
of low-level optimizations as in vecdeque, vec, etc.

2.1.2  Observations behind XRust. Based on the empirical studies
above, we make two observations:

Observation #1: Being aware that the unsafe Rust code is not
checked by the compiler, Rust programmers tend to avoid heavy
usage of unsafe Rust in practice and only rely on unsafe features
to perform necessary low-level operations [41]. This indicates that
in reality, it is likely that most objects in a Rust application are
safe objects, and critical data such as password (with high-level
semantics) is unlikely to be processed in unsafe Rust.

Apart from this, we make the second observation based on Rust’s
object memory model that indicates how indirect calls, which is
essential to control flow integrity, is handled by Rust.

Observation #2: Unlike C++ which stores the virtual function ta-
ble (vtable) pointers of an object adjacent to its data members [26],
Rust stores them separately. Internally, Rust achieves polymor-
phism and dynamic dispatching by transforming objects into trait
objects [34]. As illustrated in Figure 2, the reference to a trait ob-
ject is a fat pointer consisting of two pointers: one points to the
data members of the object and the other points to the vtable. This
implicitly puts the heap data and vtable pointers into two regions.
For unsafe objects, only its data members are allocated in the un-
safe heap region. Thus, overflow to corrupt vtable pointers is a
cross-region reference and will be prevented by XRust.

2.1.3  Protection Strength of XRust. The two observations above
lead to the following properties of XRust:

Spatial Memory Safety The observations imply that by pre-
venting cross-region references, XRust can efficiently defend Rust
programs against:

(1) Non-control data attacks in unsafe Rust code that corrupt
objects outside the unsafe region;
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Figure 2: Memory layout of objects in C++ vs Rust.

(2) Control-oriented attacks in unsafe Rust code that corrupt
the vtable pointer of a trait object or raw function point-
ers outside the unsafe region, e.g., to hijack control flow to
malicious code.

These protections are valuable in practice because (1) there is
a high chance that most sensitive data in Rust user applications
are safe objects (observation #1), and (2) vtable pointers of trait
objects are the major source of indirect jumps in Rust and they are
protected by XRust (observation #2).

Temporal Memory Safety. XRust is able to prevent temporal
memory errors from corrupting safe objects as well. In Rust, tempo-
ral errors can only happen on unsafe objects because safe Rust code
statically eliminates all temporal errors by analyzing the lifetime of
references and the ownerships of objects. So, when a temporal error
(e.g., use after free) occurs, the pointer used to access memory must
point to an unsafe object. Since our multi-region allocator will not
reuse memory previously used for unsafe objects to allocate any
safe object (Section 4.2), the freed memory of an unsafe object will
only be used to hold another unsafe object. When temporal errors
occur, memory accesses on the freed pointer will still be within
unsafe heap region so that the temporal errors can not escape the
unsafe region to corrupt safe objects.

2.2 A Motivating Example

Listing 1 shows a code fragment simplified from the rust-base64
library. For versions before 0.5.1, the library contains an integer
overflow bug that eventually leads to a heap buffer overflow. On
line 4, the vulnerable function first tries to reserve a buffer on
the heap and the size of the buffer is calculated by the vulnerable
function encoded_size that contains a integer overflow error.! A
heap overflow can happen when the integer overflow leads to a
smaller buffer and this vulnerability can be exploited to overwrite
data in safe Rust. For Rust applications depending on this library,
the unsafe code may only account for a small fraction of the entire
code. However, this bug can still result in memory corruptions in
the entire address space.

XRust significantly mitigates this vulnerability. It first identifies
buf as an unsafe object because it is used in unsafe Rust (line 9),
by analyzing the data flow from the safe Rust to unsafe Rust. Then
instead of reserving heap memory for the objects normally (line 4),
it reserves the memory for buf in the unsafe region, by rewriting

Note that Rust does check integer overflows for the debugging build by default, but
not in the optimized release build.



1 pub fn encode_config_buf<T>(buf: &
2 // reserve a large enough buffer
3 // store the encoded string

4 buf.reserve(encoded_size(len));
5 // using unsafe operation to sto
6 // string to buffer

7 unsafe {

8 // buf object is used in unsaf
9 let mut output_ptr = buf.as_mu
while condition {

// do pointer arithmetic and
// memory directly
ptr::write(output_ptr.offset

}
Listing 1: A real buffer overflow in rust-base64 due to
unsafe Rust code (CVE-2017-1000430).

the function to call an extended API. Finally, accesses to buf, which
is an unsafe object, are restricted to be within the unsafe memory
region. When using instrumentation, the memory reference on line
13 will be instrumented as follows:

1 let ptr

output_ptr.offset(..);
2 if (!in_unsafe_region(ptr))

3 raise error;

5 write(ptr, ...);

At runtime, attempts to access addresses outside the unsafe heap
region are detected by XRust, thus the vulnerability cannot be
exploited to perform attacks on safe objects.

We observe that, even with instrumentation which often imposes
high overhead for other languages such as C/C++ by other tech-
niques, XRust is still fast (3.6% overhead on median). This is because
XRust only checks memory references on unsafe objects, which
avoids heavy instrumentation to propagate the meta information
as required by techniques such as SoftBound [28], and it avoids the
expensive whole-program reaching definition analysis as required
by DFI [7] to determine valid data flows. Moreover, XRust checks
only cross-region data flow (rather than object bounds), which can
be achieved in constant time with the help of our allocator (Sec-
tion 4.2.1). In our design, we also leverage guard pages to protect
cross-region references (Section 5.2), which is even more efficient
than using instrumentation.

Figure 3 shows the technical design of XRust, which consists
of three key components: 1) extensions made to Rust and the Rust
compiler to provide high-level APIs for allocating objects in the
unsafe regions; 2) a new heap allocator that supports an unsafe heap
region; and 3) runtime protections to prevent cross-region memory
references. In the next three sections, we present the details of each
component.
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Figure 3: Three key components of XRust.

3 LANGUAGE EXTENSIONS

In this section, we first introduce necessary background on how
Rust encapsulates its heap allocation interfaces and then present
our extensions.

3.1 Heap Allocation in Rust

Instead of allowing programmers to acquire and release heap mem-
ory directly through malloc and free, Rust provides high-level
abstractions on heap memory through encapsulation on heap op-
erations. The release of a heap object is automatically inserted by
Rust compiler and programmers are not allowed to free the memory
manually to avoid errors like double frees. It also gives Rust the
flexibility of changing the allocator globally (even for pre-compiled
libraries) without recompiling the code by defining a global alloca-
tor 2 [15]. These encapsulations and the loose connection between
the language and the allocator implementation require extra ab-
straction layers between these two components.

There are two ways to acquire a piece of heap memory in Rust>.
In most cases, this can be achieved by creating a Box<T> object. For
low-level library developers, it could be done by directly interacting
with the Alloc trait (trait is similar to Java’s interface). The Box<T>
objects are wrapped pointers that can only point to heap objects
and are internally created using box expressions*. For example, the
expression box 42 allocates four-byte heap memory that stores a
32 bit integer of value 42, and it returns a Box<i32> object pointing
to the allocated heap object as the result. Those Box<T> objects will
be dropped later by the compiler-inserted code when their owners
go out the scope, i.e., the owner function returns or the owner block
terminates. In Rust’s standard libraries, neither box expressions
nor the default implementation of the Alloc trait is bounded to a
specific allocator. They both rely on the Rust compiler to generate
glue code to bind the program to a specific allocator during code
generation phase.

For heap allocation through the Alloc trait, the default imple-
mentation delegates all its tasks to a set of functions with the
__rust prefix. Specifically, __rust_alloc() for heap allocation,
__rust_dealloc() for heap deallocation, and __rust_realloc()

2The feature of switching allocators globally is not in a stable state yet. The description
in this paper is based on the latest Rust (version 1.32) by the time of writing.
3Calling malloc-like function through FFI is out of the scope.

*box expression is an unstable feature as well.
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Figure 4: Rust workflow for linking heap allocations.

for heap reallocation, etc. These functions do not have actual imple-
mentations, but are treated as special internal symbols by the Rust
compiler and implemented by compiler generated code to invoke
different allocators, e.g., the allocator for static libraries and for
executable binaries.

For heap allocation through box expressions, it requires two
lang items: “exchange_malloc” for allocation and “box_free” for
deallocation. Lang items [45] are pluggable features in Rust whose
functionalities are not hard-coded into the language but are im-
plemented in libraries, using a special marker (#[lang = "..."])
to indicate their existence. Figure 4 illustrates the workflow. At
compile time, for each box expression, the Rust compiler searches
all the dependent libraries to find functions marked by these two
lang items. The compiler then generates code by calling the func-
tion marked as exchange_malloc to allocate heap memory, and
inserts calls to the function marked as box_free to drop Box<T>
objects. In Rust’s standard libraries, the default implementation of
exchange_malloc delegates heap allocation to __rust_alloc().

3.2 Language Support for Unsafe Region

To support a different heap region, we add corresponding “unsafe”
interfaces for each of the allocation functions. For example, we
add __rust_unsafe_alloc as the entry point for allocating heap
memory in the unsafe region. The compiler is also extended to
generate code to invoke these extended functions for handling the
unsafe heap region.

We then build high-level APIs for the extended interfaces by
extending Rust’s standard library. Additional methods are added
to the Alloc and GlobalAlloc traits to deal with the unsafe heap
region. For example, the function unsafe_alloc() is added to the
Alloc trait to provide interfaces for allocating memory in the unsafe
region. Based on this, high-level classes in the standard libraries can
be extended as well. For example, Vec: :unsafe_with_capacity()
is added to the Vec structure to create a vector that puts the internal
memory buffer in the unsafe heap region, which allows programmer
to interact with unsafe allocation interfaces on their own demands.

The newly added interfaces are backward compatible with exist-
ing Rust programs. By default, calls to the extended interfaces (e.g.,
unsafe_alloc()) are delegated to the pre-existing functions (e.g.,
alloc()). The compiler-generated code also delegates the requests
from __rust_unsafe_alloc to the standard API if the underlying
allocator does not support a separate unsafe region. In this way,
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all existing Rust programs can be compiled without modification.
When programmers use the extended interfaces but with an allo-
cator that does not support the unsafe region, the allocation can
still be completed, but the allocated heap chunks will not be placed
in a separate unsafe heap region. The default implementation is
then overridden by our extended allocator and linked properly by
the compiler. Invocations on them are passed to the proper API to
allocate and free heap memory in the unsafe region.

For box expressions, we add a new operator unsafe_box to
create a Box object in the unsafe heap region. The grammar of
unsafe_box expressions is identical to box expressions, and the
result of unsafe_box expressions has the same type (Box<T>) as
the result of box expressions. Generating the same type ensures
that the unsafe_box operator can fit into the existing Rust type
system. The only difference between Box objects created by box and
unsafe_box expressions is that internally they are put into differ-
ent heap regions, but all other operations (dereference, type casting,
pattern matching, etc.) are identical. Similarly, unsafe_box will be
linked to a new lang item unsafe_exchange_malloc at compile
time, which handles the allocation of unsafe objects.

4 MULTI-REGION HEAP ALLOCATOR

Our allocator implementation is based on ptmalloc2 [18] and
supports multi-threading. We first introduce the architecture of
ptmalloc2 and then present our extensions.

4.1 Architecture of ptmalloc2

ptmalloc2 was forked from dlmalloc [25] and later merged into
glibc with threading support. ptmalloc2 maintains separate heap
segments and freelist data structures using multiple per-thread are-
nas, such that threads can rely on different arenas to perform heap
allocation/deallocation simultaneously without synchronization.

In ptmalloc2, each arena can manage a list of heap segments
(except for the main arena, which only has one heap segment). A
heap segment is a large piece of mmapped memory from where
free chunks are retrieved and returned to users. Arenas also keep
the freelist data structures of their heap segments (i.e., bins) used to
hold free chunks. Bins are divided into four different types based
on chunk sizes: fast, unsorted, small, and large, and each is handled
differently. To handle a heap allocation, ptmalloc2 chooses the
appropriate bins based on the requested size. More details can be
found in [42].

4.2 XRust Extensions on ptmalloc2

In our design to extend ptmalloc2 for handling heap (de)allocation
in the unsafe region, we followed most of its current design. The
interactions with the unsafe heap region are achieved through ex-
tended APIs such as unsafe_malloc(). These APIs are merged into
Rust and linked with extended language APIs. The data structures
used by the unsafe region are lazily initialized upon the first request
for allocating memory in the unsafe region. For applications that
do not use the unsafe region, the extended allocator acts the same
as unmodified ptmalloc2 and no overhead is imposed.

4.2.1 Unsafe Region in Heap. In our heap allocator, the set of arenas
for handling allocations in unsafe region and those for allocations
in safe region are disjoint, i.e., the unsafe arenas will not be reused



for allocating objects in safe region and vice versa. This ensures that
for every internal heap segment managed by the allocator, it only
contains the objects in the same region so that overflow originated
from unsafe objects will not corrupt safe objects.

We extend the architecture of ptmalloc? to enable fast checks
on cross-region errors. Intuitively, cross-region references can be
checked by determining whether the pointer is within the range
of any unsafe heap segment. This could lead to huge runtime over-
head since the number of unsafe heap segments is unbounded
(especially for multi-thread programs). To address the issue, we use
a pre-allocated bitmap to record the type of heap segments (safe
or unsafe), which can be quickly indexed by the start addresses of
heap segments. This introduces negligible memory overhead since
the heap segments in ptmalloc2 is 1 megabytes aligned by default,
thus the memory overhead is 1 bit per megabyte. The bitmap is pro-
tected by PROT_READ and can only be accessed inside the allocator
upon the creation of an unsafe heap segment. Under this design,
checking an memory reference takes only constant time regardless
how many unsafe heap segments have been allocated.

4.2.2  Multi-thread Support. To maximize the performance of multi-
thread programs, we adopt the per-thread arena mechanism to allow
accessing the free lists for unsafe heap region concurrently. For
multi-thread programs, threads are assigned with different arenas
to allocate heap memory. Since every arena manages a disjoint
set of heap segments, they can be accessed concurrently without
synchronization.

Our design of the multi-region heap allocator also renders time-
of-check-to-time-of-use (TOCTTOU) attacks almost impossible. To
trigger such an attack, an unsafe pointer needs to be verified to
be within unsafe region first (time of check) and later be used to
corrupt a safe object (time of use) because the unsafe object is
first freed and the same address is reused for a safe object by other
threads before the time of use. However, since unsafe heap segments
are maintained separately by different arenas in our allocator, a
freed unsafe chunk will only be reused to hold another unsafe
object, which makes the attack difficult. Besides, Rust prohibits
programmer from calling drop manually to deallocate objects to
avoid errors, which makes it even harder to launch the attack.

4.2.3 Cross-Region References inside Allocator. To fully prevent
cross-region memory references, the allocator need to be free of
cross-region errors as well. For example, memory errors can be ex-
ploited to corrupt the metadata of heap chunks because ptmalloc2
stores the metadata adjacent to user data [3].

To address this problem, we insert runtime checks to ensure
that the unsafe region inside the allocator would never be able to
reference data outside the region. For example, the free chunks in
the unsafe region would only be linked to other free chunks within
the unsafe region. Whenever the allocator attempts to access the
metadata of chunks in the unsafe region, checks are added to ensure
that the allocator can never perform cross-region references based
on corrupted data.

5 CROSS-REGION REFERENCE PREVENTION

Cross-region memory references can be prevented by in-process
memory isolation techniques, which have already been widely
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studied. It has been shown that isolation can be enforced with neg-
ligible overhead through hardware-based protection, e.g., by using
Intel MPK [48] or ARM memory domain [9, 16]. In our prototype
implementation, we explored two schemes to detect cross-region
references. The first one is to instrument memory references on
unsafe objects; the second is to utilize memory protection pages
(i.e, guard pages) to detect overflows

We explain how cross-region references are prevented by in-
strumentation as well as by memory guard page in Section 5.1 and
Section 5.2, respectively.

5.1 Code Instrumentation

We first perform an inter-procedural data flow analysis to identify
the allocation sites of unsafe objects in Rust programs, based on a
recent data flow framework [31]. Any allocated object that is later
accessed by unsafe code is considered as an unsafe object. Every
allocation site is a taint source, and every unsafe instruction is a
taint sink. We record every object that flows from a source to a sink.
Based on the results, we rewrite the program to allocate objects in
the unsafe memory region.

5.1.1 Shared Unsafe Objects in Safe Rust. We also revealed a cru-
cial technical caveat during the process of developing XRust: To
completely isolate the side effect of unsafe Rust code, the instru-
mentation should be applied not only on unsafe Rust code but all
unsafe objects, which means that not only the data directly touched
by unsafe code, but also everything transitively reachable from
such data need to be instrumented.

Consider the following code that creates a vector of length 3 on
line 1 and calls an unsafe function set_len() on line 3 to set the
length of the vector to 10 manually (without resizing the buffer).

1 let v

= vec![1,2,3];
2 unsafe {

3 v.set_len(10);

¥

5 let elem = v[9];

4

The memory reference on line 5 is an out-of-bound read because
the vector has only allocated the memory space for storing three
integers. The code above passes the Rust compiler because the
vector length is changed by unsafe code. Moreover, no exception
will be thrown at runtime by the assertion inserted for the memory
reference on line 5, which only checks if the vector index is less
than the vector length.

This is an example of how unsafe Rust can be used to override the
internal states of an object, and it can lead to a memory corruption
outside unsafe Rust (but on unsafe objects). Therefore, to provide
complete protection, all memory references on unsafe objects (in-
side or outside unsafe Rust) need to be checked. In fact, one of the
real vulnerabilities in Rust (VecDeque, see Section 6.4.1) belongs
to this category. This also indicates that one of the related works,
FC [2], fails to provide a complete isolation from unsafe Rust code
as it only protects unsafe Rust code.

For instrumentation, we apply a context-insensitive pointer anal-
ysis (using SVF [43]) to identify memory references on unsafe ob-
jects. Since static pointer analysis is conservative, the points-to set
of a pointer can contains both safe and unsafe objects. To address



1 let mut ptr;
2 if (condition) {

3 ptr = __rust_alloc();

4 shadow[ptr] = SAFE;

5 } else {

6 ptr = __rust_unsafe_alloc();
7 shadow[ptr] = UNSAFE;

8

9 if (shadow[ptr] == UNSAFE) {

if(lin_unsafe_region(ptr))
raise error;
}
let v = *xptr;
Listing 2: An example for distinguishing between safe
and unsafe objects.

this issue, we use shadow memory to mark the types of pointers
and only perform checks on pointers of unsafe objects at runtime.

Take the program in Listing 2 as an example, the points-to set of
ptr contains both safe and unsafe objects. To check only references
on unsafe objects, a shadow memory is allocated and indexed by
the pointer’s address. This method is inspired by SoftBound [28],
but instead of storing bound information of a pointer in shadow
memory, we only use 1 bit to store whether a pointer points to
an unsafe object at runtime. More detail on how the metadata is
propagated and passed into function can found in the SoftBound
paper [28]. Compared to SoftBound, this has much lower space
overhead: As heap objects managed by ptmalloc2 are 16 bytes
aligned, XRust imposes at most 1 bit overhead for 16 bytes memory,
thus the memory overhead is < 1%. The protection on shadow
memory can be done by using approaches discussed in CPI [24]
with negligible overhead.

5.2 Guard Page

A more efficient approach can be implemented by imposing two
guard pages below and above each heap segment. Since the guard
pape cannot be accessed, cross-region references can be detected
when it touch the guard page. To bypass this protection, cross-
region references must stride across an entire guard page to avoid
being detected.

This approach is often more efficient than code instrumentation,
though in theory guard page is incomplete (e.g., a direct long jump
from the unsafe region to the safe region without touching the
guard page). There are reports on how the Linux’s stack guard page
can be bypassed to launch attacks [13], and it could be mitigated by
enlarging the size of guard pages [12]. Nevertheless, complete and
efficient hardware-based techniques such as Intel MPK and ARM
memory domains can also be integrated into XRust, as explored in
recent work [9, 48].

Using guard pages also avoids pointer analysis needed by instru-
mentation. Unlike instrumentation, which requires pointer analysis
to locate unsafe objects to insert assertions before memory accesses
on them, guard page enforces isolation automatically after the ob-
jects are allocated into different regions. If a cross-region data flow
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occurs on an unsafe object, the guard page will be accessed and a
segment fault will be issued automatically by the operating system.

6 EVALUATION

We have conducted extensive experiments to evaluate the effec-
tiveness and efficiency of XRust. To evaluate the efficiency, we
deployed XRust on six widely-used real-world applications. We
also studied five core components of Rust’s standard library where
unsafe Rust is used ubiquitously to examine XRust in extreme cases.
We measured the overhead of XRust under two protection schemes:
guard page and instrumentation. Our experimental results show
that XRust incurs 0.15% overhead on median (2% on average) when
applying guard pages to detect cross-region references, and 3.6%
overhead on median (21% on average) when using instrumentation.
We also compared XRust with DFI [7] to understand the overhead
that could be introduced by imposing a full protection of data-flow
integrity.

To evaluate the effectiveness, we studied all the three publicly
reported memory corruption errors that we could find in real Rust
programs [5, 37, 38]. We designed attacks to exploit these errors
and applied XRust to defend against them.

The experiments ran on an AMD Ryzen 2600X with 6 cores@3.6GHz

processor in 64 bit mode with 32GB RAM. All experiments were
done on Ubuntu Bionic Beaver (18.04 LTS).

6.1 Efficiency

All the real-world Rust applications are popular projects (with
more than one million downloads) collected from crates.io, the
official package central repository of Rust, and they all contain
unsafe Rust code. We use their built-in benchmarks to measure the
performance of XRust for fairness. All the Rust standard libraries
are measured using the benchmarks from the Rust compiler. The
results are reported in Table 2 (averaged over 50 runs).

When using guard page, the overhead comes from the inserted
checks performed in the heap allocator to avoid errors caused by
corrupted metadata in the unsafe region (discussed in Section 4.2.3).
Most cross-region references outside the heap allocator are au-
tomatically detected and reported by the operating system upon
illegal accesses on guard pages. This approach also introduces 8 KB
(two pages) memory overhead for each unsafe heap segment to
place guard pages right below and above every unsafe segment.

As reported in Table 2, the overhead is negligible for most real-
world applications (less than 0.5% for base64, byteorder, image
and regex). One important factor that affects the performance is
the frequency of heap allocations performed in the unsafe heap
region. The highest overhead (9.6%) is reported on bytes, which
heavily relies on unsafe heap allocation. We discuss the allocation
statistics in Section 6.2.

When using instrumentation, the overhead is higher than
using guard pages, because it requires a region check before each
memory reference on unsafe objects. Nevertheless, the overhead is
still low in most cases (less than 5% for base64, byteorder, image
and regex, and 16% for bytes). The highest overhead (103%) is
reported on base64 (different from that of using guard pages). By
analyzing the instrumented program, we found the reason is that in



Table 2: Performance of XRust and DFI on real-world Rust applications and standard Rust libraries (grayed rows).

#Dow- Native XRust DFI
App Ver. LoC . .

nload || (ms/iter) || g-page [ overhead H inst. | overhead exec. [ overhead
base64 0.5.1 2K 2.32M 3527.72 || 3529.59 0.06% || 7167.63 103.15% 9721.60 175.58%
byteorder 1.2.7 23K 4.70M 2591 26.01 0.03% 26.76 3.28% 64.53 149.05%
json 0.11.13 43K 0.39M 2213.17 || 2260.96 2.16% || 2298.91 3.87% || 12985.72 486.75%
bytes 0.4.10 7.9K 1.80M 6.24 6.84 9.62% 7.25 16.19% 33.471 436.39%
image 0.20.1 | 13.3K 0.54M 2151.26 || 2152.87 0.07% || 2189.92 1.77% || 13426.83 524.14%
regex 1.0.6 | 48.1K 6.03M 2157.80 || 2162.48 0.22% || 2187.68 1.17% || 15251.78 606.82%
Median - - - 2154.53 || 2157.68 0.15% || 2188.80 3.6% || 11353.66 461.57%
Average - - - 1680.35 || 1689.79 2.03% || 2313.03 21.57% 8580.66 396.46%
vec 1.30.0 - - 0.40 0.42 4.08% 090 | 123.08% 432 | 555.00%
string 1.30.0 : : 2.00 2.03 1.52% 416 | 108.30% 557 | 178.50%
linked-list | 1.30.0 - - 0.16 0.17 6.76% 020 | 13.70% 052 | 225.00%
vec-deque | 1.30.0 = = 0.71 0.71 1.13% 0.72 2.26% 401 | 464.79%
btree 1.30.0 - - 21.97 22.58 2.80% 23.88 8.69% 114.81 | 422.58%
Median - - - 0.71 0.71 2.80% 0.90 | 13.70% 432 | 422.58%
Avg. - - - 5.05 5.18 3.26% 592 | 51.21% 2585 | 369.17%

base64 the checks are inserted into a performance-critical function,
which occupies over 98% execution time of the program.

For the Rust standard libraries, the overhead is slightly higher
than the real Rust applications, with approximately 3% for guard
pages and 50% for instrumentation. The reason is that to bridge
between unsafe low-level operations and high-level Rust language
features, Rust’s standard library typically uses more unsafe Rust
code, which increases the number of inserted runtime checks. Also,
the performance overhead is highly-related to the tests performed
on the benchmarks. Since we used the original test suites (for evalu-
ation fairness) and the tests examine different aspects of the bench-
marks, it could lead to different performance numbers. For example,
one of the four test cases for vec-deque aims at testing the speed
of allocating new objects, which imposes little overhead as no mem-
ory references need to be instrumented. It explains the differences
between the overhead reported in Table 2.

Comparison to DFI, DFI [7] provides a strong protection against
control and data attacks, by ensuring the integrity of data flows at
runtime with respect to a statically computed data-flow graph. Un-
fortunately DFI incurs prohibitive overhead in practice (e.g., around
4X runtime overhead on average in our experiments®). In their orig-
inal work, Castro et al. use a static reaching definition analysis to
determine the set of write instructions for each memory read, and
maintain a runtime definition table (RDT) to record the last write
instruction to each memory location at runtime. This incurs both
large runtime overhead (for checking all reads and writes) and space
overhead (for storing the RDT) even after several optimizations.
Differently, XRust ensures the data-flow integrity from unsafe Rust
to safe Rust by isolating the unsafe memory region, thus it is much
faster (over an order of magnitude) than the full DFI, as reported in
Table 2.

5The DFI prototype was implemented by ourselves on top of LLVM following the
paper [7], since DFI is not available.
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Table 3: Allocation statistics in safe and unsafe heap regions.

App #allocation | #allocation . unsafe
(safe) (unsafe) allocation
base64 57.50M 25.41M 30.64%
byteorder 13.47K 4 0.02%
json 18.07M 0.39M 2.11%
bytes 34.06M 126.98M 78.85%
image 9.21IM 10 0.00%
regex 19.83M 675 0.00%
Avg. 23.11M 25.46M 18.60%
vec 611.89M 37.49M 5.78%
string 516.80M 40.69M 7.21%
linked-list 2.93K 68.70M 99.95%
vec-deque 1.40K 12.54M 99.98%
btree 2.99K 20.51K 87.28%
Avg. [ 11521M | 42.26M 60.04%

6.2 Allocation Statistics

Table 3 reports the statistics of heap allocations in safe and unsafe
regions in our experiments. For most applications, they only use
unsafe Rust in limited locations and thus the allocations in the
unsafe region only account for a small fraction of the total amount
of heap allocations. One exception is bytes, which has around 80%
allocations in unsafe code. It is because bytes is a library that deals
with low-level data structure. It relies on unsafe Rust heavily to
access the low-level binary data. For other applications such as
regex and json, almost all objects are safe. The data also confirms
our observation that in high-level user applications, programmers
typically avoid heavy use of unsafe Rust.

For the standard Rust libraries, the statistics are the opposite.
For three out of the five libraries, almost all the objects are unsafe.
However, this is not surprising since unsafe Rust is widely used in
standard libraries to deal with low-level operations.



Table 4: Performance of the heap allocator with different numbers of unsafe heap segments.

Size #Thread: 1 #Thread: 2 #Thread: 4 #Thread: 8 Avg.
(byte) ptm- | unsafe | over- || ptm- | unsafe | over- || ptm- | unsafe | over- || ptm- | unsafe | over- || over-
y alloc ! ext. head || alloc ext. head || alloc ext. head || alloc ext. head || head
16~1k || 259M | 24.5M | 5.3% || 5.2M 5.1M 1.3% || 3.8M 35M | 6.6% || 2.3M 22M | 3.9% 4.3%
32~2k || 25.6M | 23.7M | 7.8% || 4.3M 42M | 3.7% || 2.TM 27M | 0.5% || 2.2M 22M | 0.3% 3.1%
64~4k 16.0M | 155M | 3.1% || 1.7M 1.6M | 5.5% || 1.3M 1.2M | 8.3% || 1.9M 1.8M | 5.3% 5.6%
128~8k 149M | 13.8M | 7.9% || 1.4M 1.3M | 11.4% || 1.0M 1.0M | 3.8% || 1.8M 1.7M | 7.9% 7.7%
256~16k 13.7M | 129M | 6.5% || 1.1M 1.IM | 33% || 1.2M 1.IM | 79% || 1.7M 1.6M | 6.4% 6.0%
Avg. [[ 192M | 181M | 6.1% [[ 28M | 27M [ 5.0% [[ 20M | 19M | 54% [| 20M [ 19M [ 4.7% [ 5.3%
1 // using VecDeque as an example
2 pub fn exploit() { Heap Heap Heap Stack Heap Stack
3 //target object to corrupt (on stack)
4 let t = target_trait_obj; » -
5 let mut a = VecDeque::with_capacity(num); fn > fn*
o {
7 // allocated just below deque a a o a a macro unlink {
8 @ let mut b = Vec::with_capacity(); C<D *(FD + off)
; metadata|  fmetadata] |5, | metadata metadata| | | "ok
10 @ // overflow here (in Section 6.4.1); A T ED~ (E) *f]?”? I .!,f],) 777777 oo
1 deque.reserve(); BK BK BK — fn malcode E BK —’i fn malcode E
12 // corrupt metadata N~ w1 o { [ H
13 prepare_to_attack(); b b b 1 E b E E
14 @ deque.push_back(&t); Ll_________j ij __________
15 @Y // free of b
=

Figure 5: A proof-of-concept attack performed on VecDeque.

6.3 Performance of the Allocactor

The customized heap allocator is a core part of XRust and the
checks inserted inside the allocator can affect performance. To
quantify its performance, we have heavily tested the allocator using
a benchmark from rpmalloc [19] and compared with unmodified
ptmalloc2. In our settings, the benchmark iterates 20,000 times in
total and in each iteration it allocates and frees 30,000 heap objects
of various sizes. In addition, all the objects are allocated via extended
interfaces and placed in the unsafe region. This experiment could be
viewed as a worst case stress testing since the only functionality of
the benchmark is to allocate and deallocate heap memory, and hence
provides insights on the worst case performance of the allocator.

The results are reported in Table 4. The overall performance
of the extended allocator is about 5% slower than ptmalloc2 on
average when tested with 1, 2, 4 and 8 threads.

6.4 Effectiveness on Real Vulnerabilities

By the time of writing, we found three reported memory corruption
errors in real-world Rust programs. We carefully studied each of
them and found that XRust is capable of preventing all these errors.

6.4.1 Corruption in VecDeque. VecDeque is a double-ended queue
implemented with a growable ring buffer and it is a part of Rust’s
standard library. A buffer overflow vulnerability (CVE-2018-1000657)
was discovered inside the VecDeque: : reserve function only re-
cently. The simplified code is listed below:
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pub fn reverse(&mut self, additional: usize) {
let new_cap = used_cap + additional;
if new_cap > self.capacity() {
self.buf.reserve(..);

2
3
4
unsafe {
self.handle_cap_increase(..);

Y33

The root cause of the bug is on line 4, where the function mixes
up its internal capacity with its user-visible capacity. Because the
user-visible capacity is one element smaller than the actual size of
the buffer, The unsafe function handle_cap_increase can cause
the pointer to point to out-of-bound memory address and upon
next push, a value can be written outside the buffer.

The vulnerability can be exploited to overflow one element out-
side the buffer, Because there is no public attack on this vulnera-
bility, we manually built a proof-of-concept case with a vulnerable
program using the function, and performed an unsafe unlink ex-
ploit [39] to make an arbitrary write to vtable pointers as in Figure 5.
This attack would fail on recent glibc since extra security checks
were added into the library. Workaround to bypass the checks could
be found in [39]. The result shows that XRust is able to detect the
attack consistently because both the stack and the data segment
are outside the unsafe heap region. A cross-region write to corrupt
the stack data and vtable pointers is detected by the heap allocator
since the metadata is corrupted by the overflow.



6.4.2 Corruption in str: :repeat. A buffer overflow bug was re-
ported in the function str: : repeat (CVE-2018-1000810), which is
also a part of Rust’s standard library. The root cause of the bug is an
instance of integer overflow to buffer overflow bugs. The simplified
code is listed below:

1 pub fn repeat(&self, u: usize) -> Vec<T> {
2 let mut buf = Vec::with_capacity(n * len);

4 while condition {

5 unsafe {

6 ptr::copy(buf.as_ptr(),

7 buf.as_ptr().add(len),
8 len);

9

L S

The function is used to create a string that repeats a fixed number
of times. On line 2, when calculating the capacity of the Vec to hold
the string by n  len, an integer overflow could happen, which in
turn results in a smaller buffer and causes an overflow when using
unsafe code to store the value on line 6. We similarly conducted
the same proof-of-the-concept attack on it as on VecdDeque, and
XRust can detect the overflow as well.

6.4.3 Corruption in Base64. The details of this error (CVE-2017-
1000430) have been presented in Section 2.2. Attacking this vul-
nerability is more difficult than the previous two cases, because it
requires triggering an overflow on a 64 bit integer. To perform a
proof-of-concept attack, we changed the Base64 code to use 16 bit
integer. The experiment setting is similar to the other two cases,
and XRust is able to defend the attack in this case as well.

7 RELATED WORK

Techniques against memory-based attacks. Securing software
against memory-based attacks has been an extremely important
yet challenging problem. Many approaches have been proposed
for C/C++ programs, such as SoftBound+CETS [28, 29] to provide
full memory safety, CPI [24] to secure code pointers, CFI [1] to
defend against control-flow attacks, and DFI [7] to defend against
data-flow attacks. Our method of using separate memory to store
metadata of pointers is inspired by SoftBound, but instead of storing
bound metadata in the shadow memory, we only require one bit
per pointers to indicate whether it points to an unsafe object or not.
Also, instead of instrumenting every memory reference to check
the bounds of objects, we only instrument memory references on
unsafe objects and only check if the references are within the unsafe
heap region.

Techniques target specifically at control-flow attacks such as
CFI [1], CPI [24] have seen wide adoption in commodity operating
systems and compilers [46], because they are practical to thwart
most abnormal control transfers with only a small or negligible
overhead. However, they can be bypassed by data-only attacks
such as Heartbleed [17]. DFI is a promising technique to deal with
memory corruption, however, as shown in our experiments, a full
DFI incurs prohibitive runtime overhead.

!Measured by the number of memory operations per CPU second.
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Techniques specific to Rust. A few research efforts have been
invested into Rust to formally prove memory safety properties of
the language [22, 33, 49], and to statically verify Rust programs [47].
Among them, FC [2] shares a similar goal as XRust, though with
very different techniques. At the technical level, FC uses operating
system-level support whereas XRust extends the heap allocator.
FC only isolates data from unsafe foreign functions by mprotect
system calls instead of all sources of unsafe Rust as addressed by
XRust. Also, as discussed earlier in Section 5.1, FC does not handle
the shared unsafe objects in safe code.

The Rustbelt project [22] has formally proved the memory safety
of a realistic subset of Rust, including several standard Rust libraries
with the existence of unsafe Rust. CRUST [47] uses bounded model
checking to verify memory safety in unsafe Rust code by first trans-
lating Rust programs into C, and is shown effective in discovering
memory errors in the Rust standard libraries.

Isolation of resources. Isolation is a common approach to miti-
gate the influence of untrusted resources and XRust can be viewed
as a new isolation approach within the address space of a single
Rust program. Researchers have proposed numerous techniques
to isolate memory regions in different domains. Native Client [51]
provides memory sandbox for untrusted library code by loading
libraries into limited containers. Codejail [50] propose another ap-
proach to limit libraries by making the program data read-only.
Linux’s seccomp [11] can also be utilized to limit system calls from
accessing security-crucial data. For web browsers, the isolation of
resources (e.g., SOP [4]) is extremely important to defend agaist
malicious websites.

There also exist a variety of isolation techniques by partition-
ing the code path. Wedge [6] provides memory isolation among
sthreads, each of which contains a thread of control and security
policy defined by the programmer. Shreds [9], on the other hand,
splits each thread’s execution into multiple segments marked by
shred_enter () and shred_exit(), and provides isolated compart-
ments of code and data between different segments through com-
piler and architectural support. These two are different from XRust
as they both require programmers’ effort to modify the program,
whereas XRust is fully automated by leveraging unique features of
the Rust programming language. PtrSplit [27] partitions the pro-
grams by marking sensitive pointers and selectively checking the
bounds of pointers. The resource isolation schemes are also stud-
ied for Java programs. For example, Robusta [40] and Arabica [44]
isolate the Java native interface (JNI) from safe Java code.

8 DISCUSSIONS AND LIMITATIONS

We note that XRust targets memory safety issues brought by un-
safe Rust only. XRust assumes Rust’s memory safety guarantees
to be valid, which requires a correct design and implementation of
Rust and its framework (including its standard libraries) so that no
memory error will occur in the absence of unsafe Rust code. This is
essential as safe abstractions provided by programming languages
are inherently encapsulations on unsafe operations. Attackers can-
not modify the code segments since they are unwritable and they
cannot control the program loading process. These requirements
ensure that the integrity of the instrumented dynamic checks and



the heap allocator can safely set up the isolation between safe and
unsafe memory regions.

XRust does not handle dynamic code generation. This is a difficult
problem because the new code cannot be analyzed or instrumented
statically by a compiler. This limitation is shared by techniques
relying on static analysis, e.g., SoftBound [28], DFI [7], and CPI [24]
will all fail to protect against vulnerable code generated dynamically.
A potential solution is to track dynamically generated code and
continue the analysis at runtime. We leave it as future work.

9 CONCLUSION

We have presented XRust, a novel approach to protect safe memory
objects in Rust from being corrupted by unsafe Rust code. The key
idea is to separate the address space of a Rust program into two
non-overlapping regions with a customized heap allocator and au-
tomatically insert runtime checks to efficiently detect cross-region
references on unsafe objects. Our extensive evaluation on both pop-
ular real-world Rust applications and standard Rust libraries shows
that XRust is highly effective and efficient: it prevents attacks on
the all the known Rust vulnerabilities while exhibiting small or
negligible overhead. We stress that it is promising to apply XRust
to secure Rust applications in practice.

The source-code of the XRust compiler can be obtained through
https://github.com/parasol-aser/XRust. The configured docker im-
age can be obtained through https://hub.docker.com/repository/
docker/geticliu/xrust-icse2020
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